CPU CPU viết tắt của chữ Central Processing Unit (tiếng Anh), tạm dịch là đơn vị xử lí trung tâm. CPU có thể được xem như não bộ, một trong những phần tử cốt lõi nhất của máy vi tính. Nhiệm vụ chính của CPU là xử lý các chương trình vi tính và dữ kiện. CPU có nhiều kiểu dáng khác nhau. Ở hình thức đơn giản nhất, CPU là một con chip với vài chục chân. Phức tạp hơn, CPU được ráp sẵn trong các bộ mạch với hàng trăm con chip khác. CPU là một mạch xử lý dữ liệu theo chương trình được thiết lập trước. Nó là một mạch tích hợp phức tạp gồm hàng triệu transitor trên một bảng mạch nhỏ. Bộ xử lý trung tâm bao gồm Bộ điều khiển và Bộ làm tính. Bộ điều khiển (CU-Control Unit) Là các vi xử lí có nhiệm vụ thông dịch các lệnh của chương trình và điều khiển hoạt động xử lí,được điều tiết chính xác bởi xung nhịp đồng hồ hệ thống. Mạch xung nhịp đồng hồ hệ thống dùng để đồng bộ các thao tác xử lí trong và ngoài CPU theo các khoảng thời gian không đổi.Khoảng thời gian chờ giữa hai xung gọi là chu kỳ xung nhịp.Tốc độ theo đó xung nhịp hệ thống tạo ra các xung tín hiệu chuẩn thời gian gọi là tốc độ xung nhịp - tốc độ đồng hồ tính bằng triệu đơn vị mỗi giây-Mhz. Thanh ghi là phần tử nhớ tạm trong bộ vi xử lý dùng lưu dữ liệu và địa chỉ nhớ trong máy khi đang thực hiện tác vụ với . Bộ số học-logic (ALU-Arithmetic Logic Unit) Có chức năng thực hiện các lệnh của đơn vị điều khiển và xử lý tín hiệu. Theo tên gọi,đơn vị này dùng để thực hiện các phép tính số học(+,-,*,/)hay các phép tính logic(so sánh lớn hơn,nhỏ hơn...) Mô tả chức năng Chức năng cơ bản của máy tính là thực thi chương trình. Chương trình được thực thi gồm một dãy các chỉ thị được lưu trữ trong bộ nhớ. Đơn vị xử lý trung tâm(CPU) đảm nhận việc thực thi này. Quá trình thực thi chương trình gồm hai bước: CPU đọc chỉ thị từ bộ nhớ và thực thi chỉ thị đó. Việc thực thi chương trình là sự lặp đi lặp lại quá trình lấy chỉ thị và thực thi chỉ thị. Tốc độ Tốc độ xử lý của máy tính phụ thuộc vào tốc độ của CPU, nhưng nó cũng phụ thuộc vào các phần khác (như bộ nhớ trong, RAM, hay bo mạch đồ họa). Có nhiều công nghệ làm tăng tốc độ xử lý của CPU. Ví dụ công nghệ Core 2 Duo. Tốc độ CPU có liên hệ với tần số đồng hồ làm việc của nó (tính bằng các đơn vị như MHz, GHz, ...). Đối với các CPU cùng loại tần số này càng cao thì tốc độ xử lý càng tăng. Đối với CPU khác loại, thì điều này chưa chắc đã đúng; ví dụ CPU Core 2 Duo có tần số 2,6GHz có thể xử lý dữ liệu nhanh hơn CPU 3,4GHz một nhân. Tốc độ CPU còn phụ thuộc vào bộ nhớ đệm của nó, ví như Intel Core 2 Duo sử dụng chung cache L2 (shared cache) giúp cho tốc độ xử lý của hệ thống 2 nhân mới này nhanh hơn so với hệ thống 2 nhân thế hệ 1 ( Intel Core Duo và Intel Pentium D) với mỗi core từng cache L2 riêng biệt. (Bộ nhớ đệm dùng để lưu các lệnh hay dùng, giúp cho việc nhập dữ liệu xử lý nhanh hơn). Hiện nay công nghệ sản xuất CPU làm công nghệ 65nm. Hiện đã có loại CPU Quad-Core (4 nhân). Hãng AMD đã cho ra công nghệ gồm 2 bộ xử lý, mỗi bộ 2-4 nhân. Phương thức sản xuất CPU Các CPU đều đươc chế tạo theo các bước dưới đây[1]: Thiết kế: Đây là bước các kiến trúc sư thiết kế chip, nghĩa là cách nó sẽ làm việc như thế nào. Chế tạo đế sản xuất (wafer): Đây là quá trình chính trong việc sản xuất chip và chúng ta sẽ xem xét đến nó trong hướng dẫn này. Chuẩn bị kiến khuôn rập: Bước này cơ bản gồm việc cắt các chip từ wafer Đóng gói: Trong bước này, các thiết bị đầu cuối và phần chính được bổ sung vào chip Kiểm tra: CPU được kiểm tra trước khi đem đi bán Các nhà sản xuất Hai nhà sản xuất CPU lớn hiện nay là Intel và AMD. Một trong những CPU đầu tiên của hãng Intel là chip Intel 4004. Tung ra thị trường vào tháng 11 năm 1971, Intel 4004 có 2250 transistors và 16 chân. Một CPU của Intel năm 2006 là chiếc Intel Northwood P4, có 55 triệu transistors và 478 chân. Nhà sản xuất AMD (Advanced Micro Devices) cũng được đánh giá cao cho một số sản phẩm CPU của họ. Ổ đĩa cứng Ổ đĩa cứng, hay còn gọi là ổ cứng (tiếng Anh: Hard Disk Drive, viết tắt: HDD) là thiết bị dùng để lưu trữ dữ liệu trên bề mặt các tấm đĩa hình tròn phủ vật liệu từ tính. Ổ đĩa cứng là loại bộ nhớ "không thay đổi" (non-volatile), có nghĩa là chúng không bị mất dữ liệu khi ngừng cung cấp nguồn điện cho chúng. Ổ đĩa cứng là một thiết bị rất quan trọng trong hệ thống bởi chúng chứa dữ liệu thành quả của một quá trình làm việc của những người sử dụng máy tính. Những sự hư hỏng của các thiết bị khác trong hệ thống máy tính có thể sửa chữa hoặc thay thế được, nhưng dữ liệu bị mất do yếu tố hư hỏng phần cứng của ổ đĩa cứng thường rất khó lấy lại được. Ổ đĩa cứng là một khối duy nhất, các đĩa cứng được lắp ráp cố định trong ổ ngay từ khi sản xuất nên không thể thay thế được các "đĩa cứng" như với cách hiểu như đối với ổ đĩa mềm hoặc ổ đĩa quang. Tổng quan Ổ cứng thường được gắn liền với máy tính để lưu trữ dữ liệu cho dù chúng xuất hiện muộn hơn so với những chiếc máy tính đầu tiên. Với sự phát triển nhanh chóng của công nghệ, ổ đĩa cứng ngày nay có kích thước càng nhỏ đi đến các chuẩn thông dụng với dung lượng thì ngày càng tăng lên. Những thiết kế đầu tiên ổ đĩa cứng chỉ dành cho các máy tính thì ngày nay ổ đĩa cứng còn được sử dụng trong các thiết bị điện tử khác như máy nghe nhạc kĩ thuật số, máy ảnh số, điện thoại di động thông minh (SmartPhone), máy quay phim kĩ thuật số, thiết bị kỹ thuật số hỗ trợ cá nhân... Không chỉ tuân theo các thiết kế ban đầu, ổ đĩa cứng đã có những bước tiến công nghệ nhằm giúp lưu trữ và truy xuất dữ liệu nhanh hơn: ví dụ sự xuất hiện của các ổ đĩa cứng lai giúp cho hệ điều hành hoạt động tối ưu hơn, giảm thời gian khởi động của hệ thống, tiết kiệm năng lượng, sự thay đổi phương thức ghi dữ liệu trên các đĩa từ làm cho dung lượng mỗi ổ đĩa cứng tăng lên đáng kể. Lịch sử phát triển Năm 1955 Ổ cứng đầu tiên trên thế giới có là IBM 350 Disk File được chế tạo bởi Reynold Johnson ra mắt năm 1955 cùng máy tính IBM 305. Ổ cứng này có tới 50 tấm đĩa kích thước 24" với tổng dung lượng là 5 triệu kí tự. Một đầu từ được dùng để truy nhập tất cả các tấm đĩa khiến cho tốc độ truy nhập trung bình khá thấp. Năm 1961 Thiết bị lưu trữ dữ liệu IBM 1301 ra mắt năm 1961 bắt đầu sử dụng mỗi đầu từ cho một mặt đĩa. Ổ đĩa đầu tiên có bộ phận lưu trữ tháo lắp được là ổ IBM 1311. Ổ này sử dụng đĩa IBM 1316 có dung lượng 2 triệu kí tự. Năm 1973 IBM giới thiệu hệ thống đĩa 3340 "Winchester", ổ đĩa đầu tiên sử dụng kĩ thuật lắp ráp đóng hộp (sealed head/disk assembly - HDA). Kĩ sư trưởng dự án/chủ nhiệm dự án Kenneth Haughton đặt tên theo "súng trường Winchester" 30-30 sau khi một thành viên trong nhóm gọi nó là "30-30" vì các trục quay 30 MB của ổ đĩa cứng. Hầu hết các ổ đĩa hiện đại ngày nay đều sử dụng công nghệ này, và cái tên "Winchester" trở nên phổ biến khi nói về ổ đĩa cứng và dần biến mất trong thập niên 1990. Trong một thời gian dài, ổ đĩa cứng có kích thước lớn và cồng kềnh, thích hợp với một môi trường được bảo vệ của một trung tâm dữ liệu hoặc một văn phòng lớn hơn là trong môi trường công nghiệp khắc nghiệt (vì sự mong manh), hay văn phòng nhỏ hoặc nhà riêng (vì kích cỡ quá khổ và lượng điện năng tiêu thụ). Trước thập niên 1980, hầu hết ổ đĩa cứng có các tấm đĩa cỡ 8" (20 cm) hoặc 14-inch (35 cm), cần một giá thiết bị cũng như diện tích sàn đáng kể (tiêu biểu là các ổ đĩa cứng lớn có đĩa tháo lắp được, thường được gọi là "máy giặt"), và trong nhiều trường hợp cần tới điện cao áp hoặc thậm chí điện ba pha cho những mô tơ lớn chúng dùng. Vì lí do đó, các ổ đĩa cứng không được dùng phổ biến trong máy vi tính đến tận năm 1980, khi Seagate Technology cho ra đời ổ đĩa ST-506 - ổ đĩa 5,25" đầu tiên có dung lượng 5 MB. Có một thực tế là trong cấu hình xuất xưởng, máy IBM PC (IBM 5150) không được trang bị ổ đĩa cứng. Thập niên 1990 Đa số các ổ đĩa cứng cho máy vi tính đầu thập kỷ 1980 không bán trực tiếp cho người dùng cuối bởi nhà sản xuất mà bởi các OEM như một phần của thiết bị lớn hơn (như Corvus Disk System và Apple ProFile). Chiếc IBM PC/XT được bán ra đã có một ổ đĩa cứng lắp trong nhưng xu hướng tự cài đặt nâng cấp bắt đầu xuất hiện. Các công ty chế tạo ổ đĩa cứng bắt đầu tiếp thị với người dùng cuối bên cạnh OEM và đến giữa thập niên 1990, ổ đĩa cứng bắt đầu xuất hiện trong các cửa hàng bán lẻ. Ổ đĩa lắp trong ngày càng được sử dụng nhiều trong PC trong khi các ổ đĩa lắp ngoài tiếp tục phổ biến trên máy Macintosh của hãng Apple và các nền tảng khác. Mỗi máy Mac sản xuất giữa giữa các năm 1986 và 1998 đều có một cổng SCSI phía sau khiến cho việc lắp đặt thêm phần cứng mới trở nên dễ dạng; tương tự như vậy, "toaster" (máy nướng bánh) Mac không có chỗ cho ổ đĩa cứng (hay trong Mac Plus không có chỗ lắp ổ đĩa cứng), các đời tiếp theo cũng vậy thế nên ổ SCSI lắp ngoài là có thể hiểu được. Các ổ đĩa SCSI lắp ngoài cũng phổ biến trong các máy vi tính cổ như loạt Apple II và Commodore 64, và cũng được sử dụng rộng rãi trong máy chủ cho đến tận ngày nay. Sự xuất hiện vào cuối thập niên 1990 của các chuẩn giao tiếp ngoài như USB và FireWire khiến cho ổ đĩa cứng lắp ngoài trở nên phổ biến hơn trong người dùng thông thường đặc biệt đối với những ai cần di chuyển một khối lượng lớn dữ liệu giữa hai địa điểm. Vì thế, phần lớn các ổ đĩa cứng sản xuất ra đều có trở thành lõi của các vỏ lắp ngoài. Ngày nay Dung lượng ổ đĩa cứng tăng trưởng theo hàm mũ với thời gian. Đối với những máy PC thế hệ đầu, ổ đĩa dung lượng 20 megabyte được coi là lớn. Cuối thập niên 1990 đã có những ổ đĩa cứng với dung lượng trên 1 gigabyte. Vào thời điểm đầu năm 2005, ổ đĩa cứng có dung lượng khiêm tốn nhất cho máy tính để bàn còn được sản xuất có dung lượng lên tới 40 gigabyte còn ổ đĩa lắp trong có dung lượng lớn nhất lên tới một nửa terabyte (500 GB), và những ổ đĩa lắp ngoài đạt xấp xỉ một terabyte. Cùng với lịch sử phát triển của PC, các họ ổ đĩa cứng lớn là MFM, RLL, ESDI, SCSI, IDE và EIDE, và mới nhất là SATA. Ổ đĩa MFM đòi hỏi mạch điều khiển phải tương thích với phần điện trên ổ đĩa cứng hay nói cách khác là ổ đĩa và mạch điều khiền phải tương thích. RLL (Run Length Limited) là một phương pháp mã hóa bit trên các tấm đĩa giúp làm tăng mật độ bit. Phần lớn các ổ đĩa RLL cần phải tương thích với bộ điều khiển nó làm việc với. ESDI là một giao diện được phát triển bởi Maxtor làm tăng tốc trao đổi thông tin giữa PC và đĩa cứng. SCSI (tên cũ là SASI dành cho Shugart (sic) Associates), viết tắt cho Small Computer System Interface, là đối thủ cạnh tranh ban đầu của ESDI. Khi giá linh kiện điện tử giảm (do nhu cầu tăng lên) các chi tiết điện tử trước kia đặt trên cạc điều khiển đã được đặt lên trên chính ổ đĩa cứng. Cải tiến này được gọi là ổ đĩa cứng tích hợp linh kiện điện tử (Integrated Drive Electronics hay IDE). Các nhà sản xuất IDE mong muốn tốc độ của IDE tiếp cận tới tốc độ của SCSI. Các ổ đĩa IDE chậm hơn do không có bộ nhớ đệm lớn như các ổ đĩa SCSI và không có khả năng ghi trực tiếp lên RAM. Các công ty chế tạo IDE đã cố gắng khắc phục khoảng cách tốc độ này bằng phương pháp đánh địa chỉ logic khối (Logical Block Addressing - LBA). Các ổ đĩa này được gọi là EIDE. Cùng lúc với sự ra đời của EIDE, các nhà sản xuất SCSI đã tiếp tục cải tiến tốc độ SCSI. Những cải tiến đó đồng thời khiến cho giá thành của giao tiếp SCSI cao thêm. Để có thể vừa nâng cao hiệu suất của EIDE vừa không làm tăng chi phí cho các linh kiện điện tử không có cách nào khác là phải thay giao diện kiểu "song song" bằng kiểu "nối tiếp", và kết quả là sự ra đời của giao diện SATA. Tuy nhiên, hiệu suất làm việc của các ổ đĩa cứng SATA thế hệ đầu và các ổ đĩa PATA không có sự khác biệt đáng kể. Cấu tạo Ổ đĩa cứng gồm các thành phần, bộ phận có thể liệt kê cơ bản và giải thích sơ bộ như sau: Cụm đĩa: Bao gồm toàn bộ các đĩa, trục quay và động cơ. Đĩa từ. Trục quay: truyền chuyển động của đĩa từ. Động cơ: Được gắn đồng trục với trục quay và các đĩa. Cụm đầu đọc Đầu đọc (head): Đầu đọc/ghi dữ liệu Cần di chuyển đầu đọc (head arm hoặc actuator arm). Cụm mạch điện Mạch điều khiển: có nhiệm vụ điều khiển động cơ đồng trục, điều khiển sự di chuyển của cần di chuyển đầu đọc để đảm bảo đến đúng vị trí trên bề mặt đĩa. Mạch xử lý dữ liệu: dùng để xử lý những dữ liệu đọc/ghi của ổ đĩa cứng. Bộ nhớ đệm (cache hoặc buffer): là nơi tạm lưu dữ liệu trong quá trình đọc/ghi dữ liệu. Dữ liệu trên bộ nhớ đệm sẽ mất đi khi ổ đĩa cứng ngừng được cấp điện. Đầu cắm nguồn cung cấp điện cho ổ đĩa cứng. Đầu kết nối giao tiếp với máy tính. Các cầu đấu thiết đặt (tạm dịch từ jumper) thiết đặt chế độ làm việc của ổ đĩa cứng: Lựa chọn chế độ làm việc của ổ đĩa cứng (SATA 150 hoặc SATA 300) hay thứ tự trên các kênh trên giao tiếp IDE (master hay slave hoặc tự lựa chọn), lựa chọn các thông số làm việc khác... Vỏ đĩa cứng: Vỏ ổ đĩa cứng gồm các phần: Phần đế chứa các linh kiện gắn trên nó, phần nắp đậy lại để bảo vệ các linh kiện bên trong.Vỏ ổ đĩa cứng có chức năng chính nhằm định vị các linh kiện và đảm bảo độ kín khít để không cho phép bụi được lọt vào bên trong của ổ đĩa cứng.Ngoài ra, vỏ đĩa cứng còn có tác dụng chịu đựng sự va chạm (ở mức độ thấp) để bảo vệ ổ đĩa cứng. Do đầu từ chuyển động rất sát mặt đĩa nên nếu có bụi lọt vào trong ổ đĩa cứng cũng có thể làm xước bề mặt, mất lớp từ và hư hỏng từng phần (xuất hiện các khối hư hỏng (bad block))... Thành phần bên trong của ổ đĩa cứng là không khí có độ sạch cao, để đảm bảo áp suất cân bằng giữa môi trường bên trong và bên ngoài, trên vỏ bảo vệ có các hệ lỗ thoáng đảm bảo cản bụi và cân bằng áp suất. Đĩa từ Đĩa từ (platter): Đĩa thường cấu tạo bằng nhôm hoặc thuỷ tinh, trên bề mặt được phủ một lớp vật liệu từ tính là nơi chứa dữ liệu. Tuỳ theo hãng sản xuất mà các đĩa này được sử dụng một hoặc cả hai mặt trên và dưới. Số lượng đĩa có thể nhiều hơn một, phụ thuộc vào dung lượng và công nghệ của mỗi hãng sản xuất khác nhau. Mỗi đĩa từ có thể sử dụng hai mặt, đĩa cứng có thể có nhiều đĩa từ, chúng gắn song song, quay đồng trục, cùng tốc độ với nhau khi hoạt động. Track Trên một mặt làm việc của đĩa từ chia ra nhiều vòng tròn đồng tâm thành các track. Track có thể được hiểu đơn giản giống các rãnh ghi dữ liệu giống như các đĩa nhựa (ghi âm nhạc trước đây) nhưng sự cách biệt của các rãnh ghi này không có các gờ phân biệt và chúng là các vòng tròn đồng tâm chứ không nối tiếp nhau thành dạng xoắn trôn ốc như đĩa nhựa. Track trên ổ đĩa cứng không cố định từ khi sản xuất, chúng có thể thay đổi vị trí khi định dạng cấp thấp ổ đĩa (low format ). Khi một ổ đĩa cứng đã hoạt động quá nhiều năm liên tục, khi kết quả kiểm tra bằng các phần mềm cho thấy xuất hiện nhiều khối hư hỏng (bad block) thì có nghĩa là phần cơ của nó đã rơ rão và làm việc không chính xác như khi mới sản xuất, lúc này thích hợp nhất là format cấp thấp cho nó để tương thích hơn với chế độ làm việc của phần cơ Sector Khu vực Số sector/track Số byte/track Tốc độ truyền dữ liệu (MBps) 0 720 368.640 44,24 1 704 360.448 43,25 2 696 356.352 42,76 3 672 344.064 41,29 4 640 327.680 39,32 5 614 314.368 37,72 6 592 303.104 36,37 7 556 284.672 34,16 8 528 270.336 32,44 9 480 245.760 29,49 10 480 245.760 29,49 11 456 233.472 28,02 12 432 221.184 26,54 13 416 212.992 25,56 14 384 196.608 23,59 15 360 184.320 22,12 Trên track chia thành những phần nhỏ bằng các đoạn hướng tâm thành các sector. Các sector là phần nhỏ cuối cùng được chia ra để chứa dữ liệu. Theo chuẩn thông thường thì một sector chứa dung lượng 512 byte. Số sector trên các track là khác nhau từ phần rìa đĩa vào đến vùng tâm đĩa, các ổ đĩa cứng đều chia ra hơn 10 vùng mà trong mỗi vùng có số sector/track bằng nhau. Bảng sau cho thấy các khu vực với các thông số khác nhau và sự ảnh hưởng của chúng đến tốc độ truyền dữ liệu của ổ cứng Các khu vực ghi dữ liệu của ổ đĩa cứng Hitachi Travelstar 7K60 2,5". Cylinder Tập hợp các track cùng cùng bán kính (cùng số hiệu trên) ở các mặt đĩa khác nhau thành các cylinder. Nói một cách chính xác hơn thì: khi đầu đọc/ghi đầu tiên làm việc tại một track nào thì tập hợp toàn bộ các track trên các bề mặt đĩa còn lại mà các đầu đọc còn lại đang làm việc tại đó gọi là cylinder (cách giải thích này chính xác hơn bởi có thể xảy ra thường hợp các đầu đọc khác nhau có khoảng cách đến tâm quay của đĩa khác nhau do quá trình chế tạo). Trên một ổ đĩa cứng có nhiều cylinder bởi có nhiều track trên mỗi mặt đĩa từ. Trục quay Trục quay là trục để gắn các đĩa từ lên nó, chúng được nối trực tiếp với động cơ quay đĩa cứng. Trục quay có nhiệm vụ truyền chuyển động quay từ động cơ đến các đĩa từ. Trục quay thường chế tạo bằng các vật liệu nhẹ (như hợp kim nhôm) và được chế tạo tuyệt đối chính xác để đảm bảo trọng tâm của chúng không được sai lệch - bởi chỉ một sự sai lệch nhỏ có thể gây lên sự rung lắc của toàn bộ đĩa cứng khi làm việc ở tốc độ cao, dẫn đến quá trình đọc/ghi không chính xác. Đầu đọc/ghi Đầu đọc đơn giản được cấu tạo gồm lõi ferit (trước đây là lõi sắt) và cuộn dây (giống như nam châm điện). Gần đây các công nghệ mới hơn giúp cho ổ đĩa cứng hoạt động với mật độ xít chặt hơn như: chuyển các hạt từ sắp xếp theo phương vuông góc với bề mặt đĩa nên các đầu đọc được thiết kế nhỏ gọn và phát triển theo các ứng dụng công nghệ mới. Đầu đọc trong đĩa cứng có công dụng đọc dữ liệu dưới dạng từ hoá trên bề mặt đĩa từ hoặc từ hoá lên các mặt đĩa khi ghi dữ liệu. Số đầu đọc ghi luôn bằng số mặt hoạt động được của các đĩa cứng, có nghĩa chúng nhỏ hơn hoặc bằng hai lần số đĩa (nhỏ hơn trong trường hợp ví dụ hai đĩa nhưng chỉ sử dụng 3 mặt). Cần di chuyển đầu đọc/ghi Cần di chuyển đầu đọc/ghi là các thiết bị mà đầu đọc/ghi gắn vào nó. Cần có nhiệm vụ di chuyển theo phương song song với các đĩa từ ở một khoảng cách nhất định, dịch chuyển và định vị chính xác đầu đọc tại các vị trí từ mép đĩa đến vùng phía trong của đĩa (phía trục quay). Các cần di chuyển đầu đọc được di chuyển đồng thời với nhau do chúng được gắn chung trên một trục quay (đồng trục), có nghĩa rằng khi việc đọc/ghi dữ liệu trên bề mặt (trên và dưới nếu là loại hai mặt) ở một vị trí nào thì chúng cũng hoạt động cùng vị trí tương ứng ở các bề mặt đĩa còn lại. Sự di chuyển cần có thể thực hiện theo hai phương thức: Sử dụng động cơ bước để truyền chuyển động. Sử dụng cuộn cảm để di chuyển cần bằng lực từ. Hoạt động Giao tiếp với máy tính Toàn bộ cơ chế đọc/ghi dữ liệu chỉ được thực hiện khi máy tính (hoặc các thiết bị sử dụng ổ đĩa cứng) có yêu cầu truy xuất dữ liệu hoặc cần ghi dữ liệu vào ổ đĩa cứng. Việc thực hiện giao tiếp với máy tính do bo mạch của ổ đĩa cứng đảm nhiệm. Ta biết rằng máy tính làm việc khác nhau theo từng phiên làm việc, từng nhiệm vụ mà không theo một kịch bản nào, do đó quá trình đọc và ghi dữ liệu luôn luôn xảy ra, do đó các tập tin luôn bị thay đổi, xáo trộn vị trí. Từ đó dữ liệu trên bề mặt đĩa cứng không được chứa một cách liên tục mà chúng nằm rải rác khắp nơi trên bề mặt vật lý. Một mặt khác máy tính có thể xử lý đa nhiệm (thực hiện nhiều nhiệm vụ trong cùng một thời điểm) nên cần phải truy cập đến các tập tin khác nhau ở các thư mục khác nhau. Như vậy cơ chế đọc và ghi dữ liệu ở ổ đĩa cứng không đơn thuần thực hiện từ theo tuần tự mà chúng có thể truy cập và ghi dữ liệu ngẫu nhiên tại bất kỳ điểm nào trên bề mặt đĩa từ, đó là đặc điểm khác biệt nổi bật của ổ đĩa cứng so với các hình thức lưu trữ truy cập tuần tự (như băng từ). Thông qua giao tiếp với máy tính, khi giải quyết một tác vụ, CPU sẽ đòi hỏi dữ liệu (nó sẽ hỏi tuần tự các bộ nhớ khác trước khi đến đĩa cứng mà thứ tự thường là cache L1-> cache L2 ->RAM) và đĩa cứng cần truy cập đến các dữ liệu chứa trên nó. Không đơn thuần như vậy CPU có thể đòi hỏi nhiều hơn một tập tin dữ liệu tại một thời điểm, khi đó sẽ xảy ra các trường hợp: Ổ đĩa cứng chỉ đáp ứng một yêu cầu truy cập dữ liệu trong một thời điểm, các yêu cầu được đáp ứng tuần tự. Ổ đĩa cứng đồng thời đáp ứng các yêu cầu cung cấp dữ liệu theo phương thức riêng của nó. Trước đây đa số các ổ đĩa cứng đều thực hiện theo phương thức 1, có nghĩa là chúng chỉ truy cập từng tập tin cho CPU. Ngày nay các ổ đĩa cứng đã được tích hợp các bộ nhớ đệm (cache) cùng các công nghệ riêng của chúng (TCQ, NCQ) giúp tối ưu cho hành động truy cập dữ liệu trên bề mặt đĩa nên ổ đĩa cứng sẽ thực hiện theo phương thức thứ 2 nhằm tăng tốc độ chung cho toàn hệ thống. Đọc và ghi dữ liệu trên bề mặt đĩa Sự hoạt động của đĩa cứng cần thực hiện đồng thời hai chuyển động: Chuyển động quay của các đĩa và chuyển động của các đầu đọc. Sự quay của các đĩa từ được thực hiện nhờ các động cơ gắn cùng trục (với tốc độ rất lớn: từ 3600 rpm cho đến 15.000 rpm) chúng thường được quay ổn định tại một tốc độ nhất định theo mỗi loại ổ đĩa cứng. Khi đĩa cứng quay đều, cần di chuyển đầu đọc sẽ di chuyển đến các vị trí trên các bề mặt chứa phủ vật liệu từ theo phương bán kính của đĩa. Chuyển động này kết hợp với chuyển động quay của đĩa có thể làm đầu đọc/ghi tới bất kỳ vị trí nào trên bề mặt đĩa. Tại các vị trí cần đọc ghi, đầu đọc/ghi có các bộ cảm biến với điện trường để đọc dữ liệu (và tương ứng: phát ra một điện trường để xoay hướng các hạt từ khi ghi dữ liệu). Dữ liệu được ghi/đọc đồng thời trên mọi đĩa. Việc thực hiện phân bổ dữ liệu trên các đĩa được thực hiện nhờ các mạch điều khiển trên bo mạch của ổ đĩa cứng. Các công nghệ sử dụng ổ đĩa cứng S.M.A.R.T S.M.A.R.T (Self-Monitoring, Analysis, and Reporting Technology) là công nghệ tự động giám sát, chuẩn đoán và báo cáo các hư hỏng có thể xuất hiện của ổ đĩa cứng để thông qua BIOS, các phần mềm thông báo cho người sử dụng biết trước sự hư hỏng để có các hành động chuẩn bị đối phó (như sao chép dữ liệu dự phòng hoặc có các kế hoạch thay thế ổ đĩa cứng mới). Trong thời gian gần đây S.M.AR.T được coi là một tiêu chuẩn quan trọng trong ổ đĩa cứng. S.M.A.R.T chỉ thực sự giám sát những sự thay đổi, ảnh hưởng của phần cứng đến quá trình lỗi xảy ra của ổ đĩa cứng (mà theo hãng Seagate thì sự hư hỏng trong đĩa cứng chiếm tới 60% xuất phát từ các vấn đề liên quan đến cơ khí): Chúng có thể bao gồm những sự hư hỏng theo thời gian của phần cứng: đầu đọc/ghi (mất kết nối, khoảng cách làm việc với bề mặt đĩa thay đổi), động cơ (xuống cấp, rơ rão), bo mạch của ổ đĩa (hư hỏng linh kiện hoặc làm việc sai). S.M.A.R.T không nên được hiểu là từ "smart" bởi chúng không làm cải thiện đến tốc độ làm việc và truyền dữ liệu của ổ đĩa cứng. Người sử dụng có thể bật (enable) hoặc tắt (disable) chức năng này trong BIOS (tuy nhiên không phải BIOS của hãng nào cũng hỗ trợ việc can thiệp này). Ổ cứng lai Ổ cứng lai (hybrid hard disk drive) là các ổ đĩa cứng thông thường được gắn thêm các phần bộ nhớ flash trên bo mạch của ổ đĩa cứng. Cụm bộ nhớ này hoạt động khác với cơ chế làm việc của bộ nhớ đệm (cache) của ổ đĩa cứng: Dữ liệu chứa trên chúng không bị mất đi khi mất điện. Trong quá trình làm việc của ổ cứng lai, vai trò của phần bộ nhớ flash như sau: Lưu trữ trung gian dữ liệu trước khi ghi vào đĩa cứng, chỉ khi máy tính đã đưa các dữ liệu đến một mức nhất định (tuỳ từng loại ổ cứng lai) thì ổ đĩa cứng mới tiến hành ghi dữ liệu vào các đĩa từ, điều này giúp sự vận hành của ổ đĩa cứng tối hiệu quả và tiết kiệm điện năng hơn nhờ việc không phải thường xuyên hoạt động. Giúp tăng tốc độ giao tiếp với máy tính: Việc đọc dữ liệu từ bộ nhớ flash nhanh hơn so với việc đọc dữ liệu tại các đĩa từ. Giúp hệ điều hành khởi động nhanh hơn nhờ việc lưu các tập tin khởi động của hệ thống lên vùng bộ nhớ flash. Kết hợp với bộ nhớ đệm của ổ đĩa cứng tạo thành một hệ thống hoạt động hiệu quả. Những ổ cứng lai được sản xuất hiện nay thường sử dụng bộ nhớ flash với dung lượng khiêm tốn ở 256 MB bởi chịu áp lực của vấn đề giá thành sản xuất. Do sử dụng dung lượng nhỏ như vậy nên chưa cải thiện nhiều đến việc giảm thời gian khởi động hệ điều hành, dẫn đến nhiều người sử dụng chưa cảm thấy hài lòng với chúng. Tuy nhiên người sử dụng thường khó nhận ra sự hiệu quả của chúng khi thực hiện các tác vụ thông thường hoặc việc tiết kiệm năng lượng của chúng. Hiện tại (2007) ổ cứng lai có giá thành khá đắt (khoảng 300 USD cho dung lượng 32 GB) nên chúng mới được sử dụng trong một số loại máy tính xách tay cao cấp. Trong tương lai, các ổ cứng lai có thể tích hợp đến vài GB dung lượng bộ nhớ flash sẽ khiến sự so sánh giữa chúng với các ổ cứng truyền thống sẽ trở lên khác biệt hơn. Thông số và đặc tính Dung lượng Dung lượng ổ đĩa cứng (Disk capacity) là một thông số thường được người sử dụng nghĩ đến đầu tiên, là cơ sở cho việc so sánh, đầu tư và nâng cấp. Người sử dụng luôn mong muốn sở hữu các ổ đĩa cứng có dung lượng lớn nhất có thể theo tầm chi phí của họ mà có thể không tính đến các thông số khác. Dung lượng ổ đĩa cứng được tính bằng: (số byte/sector) × (số sector/track) × (số cylinder) × (số đầu đọc/ghi). Dung lượng của ổ đĩa cứng tính theo các đơn vị dung lượng cơ bản thông thường: byte, kB MB, GB, TB. Theo thói quen trong từng thời kỳ mà người ta có thể sử dụng đơn vị nào, trong thời điểm năm 2007 người người ta thường sử dụng GB. Ngày nay dung lượng ổ đĩa cứng đã đạt tầm đơn vị TB nên rất có thể trong tương lai – theo thói quen, người ta sẽ tính theo TB. Đa số các hãng sản xuất đều tính dung lượng theo cách có lợi (theo cách tính 1 GB = 1000 MB mà thực ra phải là 1 GB = 1024 MB) nên dung lượng mà hệ điều hành (hoặc các phần mềm kiểm tra) nhận ra của ổ đĩa cứng thường thấp hơn so với dung lượng ghi trên nhãn đĩa (ví dụ ổ đĩa cứng 40 GB thường chỉ đạt khoảng 37-38 GB). Tốc độ quay của ổ đĩa cứng Tốc độ quay của đĩa cứng thường được ký hiệu bằng rpm (viết tắt của từ tiếng Anh: revolutions per minute) số vòng quay trong một phút. Tốc độ quay càng cao thì ổ càng làm việc nhanh do chúng thực hiện đọc/ghi nhanh hơn, thời giam tìm kiếm thấp. Các tốc độ quay thông dụng thường là: 3.600 rpm: Tốc độ của các ổ đĩa cứng đĩa thế hệ trước. 4.200 rpm: Thường sử dụng với các máy tính xách tay mức giá trung bình và thấp trong thời điểm 2007. 5.400 rpm: Thông dụng với các ổ đĩa cứng 3,5” sản xuất cách đây 2-3 năm; với các ổ đĩa cứng 2,5” cho các máy tính xách tay hiện nay đã chuyển sang tốc độ 5400 rpm để đáp ứng nhu cầu đọc/ghi dữ liệu nhanh hơn. 7.200 rpm: Thông dụng với các ổ đĩa cứng sản xuất trong thời gian hiện tại (2007) 10.000 rpm, 15.000 rpm: Thường sử dụng cho các ổ đĩa cứng trong các máy tính cá nhân cao cấp, máy trạm và các máy chủ có sử dụng giao tiếp SCSI Các thông số về thời gian trong ổ đĩa cứng Thời gian tìm kiếm trung bình Thời gian tìm kiếm trung bình (Average Seek Time) là khoảng thời gian trung bình (theo mili giây: ms) mà đầu đọc có thể di chuyển từ một cylinder này đến một cylinder khác ngẫu nhiên (ở vị trí xa chúng). Thời gian tìm kiếm trung bình được cung cấp bởi nhà sản xuất khi họ tiến hành hàng loạt các việc thử việc đọc/ghi ở các vị trí khác nhau rồi chia cho số lần thực hiện để có kết quả thông số cuối cùng. Thông số này càng thấp càng tốt. Thời gian tìm kiếm trung bình không kiểm tra bằng các phần mềm bởi các phần mềm không can thiệp được sâu đến các hoạt động của ổ đĩa cứng. Thời gian truy cập ngẫu nhiên Thời gian truy cập ngẫu nhiên (Random Access Time): Là khoảng thời gian trung bình để đĩa cứng tìm kiếm một dữ liệu ngẫu nhiên. Tính bằng mili giây (ms). Đây là tham số quan trọng do chúng ảnh hưởng đến hiệu năng làm việc của hệ thống, do đó người sử dụng nên quan tâm đến chúng khi lựa chọn giữa các ổ đĩa cứng. Thông số này càng thấp càng tốt. Tham số: Các ổ đĩa cứng sản xuất gần đây (2007) có thời gian truy cập ngẫu nhiên trong khoảng: 5 đến 15 ms. Thời gian làm việc tin cậy Thời gian làm việc tin cậy MTBF: (Mean Time Between Failures) được tính theo giờ (hay có thể hiểu một cách đơn thuần là tuổi thọ của ổ đĩa cứng). Đây là khoảng thời gian mà nhà sản xuất dự tính ổ đĩa cứng hoạt động ổn định mà sau thời gian này ổ đĩa cứng có thể sẽ xuất hiện lỗi (và không đảm bảo tin cậy). Một số nhà sản xuất công bố ổ đĩa cứng của họ hoạt động với tốc độ 10.000 rpm với tham số: MTBF lên tới 1 triệu giờ, hoặc với ổ đĩa cứng hoạt động ở tốc độ 15.000 rpm có giá trị MTBF đến 1,4 triệu giờ thì những thông số này chỉ là kết quả của các tính toán trên lý thuyết. Hãy hình dung số năm mà nó hoạt động tin cậy (khi chia thông số MTBF cho (24 giờ/ngày × 365 ngày/năm) sẽ thấy rằng nó có thể dài hơn lịch sử của bất kỳ hãng sản xuất ổ đĩa cứng nào, do đó người sử dụng có thể không cần quan tâm đến thông số này. Bộ nhớ đệm Bộ nhớ đệm (cache hoặc buffer) trong ổ đĩa cứng cũng giống như RAM của máy tính, chúng có nhiệm vụ lưu tạm dữ liệu trong quá trình làm việc của ổ đĩa cứng. Độ lớn của bộ nhớ đệm có ảnh hưởng đáng kể tới hiệu suất hoạt động của ổ đĩa cứng bởi việc đọc/ghi không xảy ra tức thời (do phụ thuộc vào sự di chuyển của đầu đọc/ghi, dữ liệu được truyền tới hoặc đi) sẽ được đặt tạm trong bộ nhớ đệm. Đơn vị thường bính bằng kB hoặc MB. Trong thời điểm năm 2007, dung lượng bộ nhớ đệm thường là 2 hoặc 8 MB cho các loại ổ đĩa cứng dung lượng đến khoảng 160 GB, với các ổ đĩa cứng dụng lượng lớn hơn chúng thường sử dụng bộ nhớ đệm đến 16 MB hoặc cao hơn. Bộ nhớ đệm càng lớn thì càng tốt, nhưng hiệu năng chung của ổ đĩa cứng sẽ chững lại ở một giá trị bộ nhớ đệm nhất định mà từ đó bộ nhớ đệm có thể tăng lên nhưng hiệu năng không tăng đáng kể. Hệ điều hành cũng có thể lấy một phần bộ nhớ của hệ thống (RAM) để tạo ra một bộ nhớ đệm lưu trữ dữ liệu được lấy từ ổ đĩa cứng nhằm tối ưu việc xử lý đối với các dữ liệu thường xuyên phải truy cập, đây chỉ là một cách dùng riêng của hệ điều hành mà chúng không ảnh hưởng đến cách hoạt động hoặc hiệu suất vốn có của mỗi loại ổ đĩa cứng. Có rất nhiều phần mềm cho phép tinh chỉnh các thông số này của hệ điều hành tuỳ thuộc vào sự dư thừa RAM trên hệ thống. Chuẩn giao tiếp Các chuẩn giao tiếp của ổ đĩa cứng Giao tiếp (viết tắt) Tên tiếng Anh đầy đủ Tốc độ truyền dữ liệu SCSI Small Computer System Interface Nhiều loại, xem thêm Ultra160 SCSI 160 MBps Ultra320 SCSI 320 MBps ATA Advanced Technology Attachment Max = 133 MBps SATA 150 Serial ATA 150 150 MBps SATA 300 Serial ATA 300 300 MBps SATA 600 Serial ATA 600 600 MBps Có nhiều chuẩn giao tiếp khác nhau giữa ổ đĩa cứng với hệ thống phần cứng, sự đa dạng này một phần xuất phát từ yêu cầu tốc độ đọc/ghi dữ liệu khác nhau giữa các hệ thống máy tính, phần còn lại các ổ giao tiếp nhanh có giá thành cao hơn nhiều so với các chuẩn thông dụng. Trước đây, các chuẩn ATA và SATA thế hệ đầu tiên được sử dụng phổ biến trong máy tính cá nhân thông thường trong khi chuẩn SCSI và Fibre Channel có tốc độ cao hơn được sử chủ yếu nhiều trong máy chủ và máy trạm. Gần đây, các chuẩn SATA thế hệ tiếp theo với tốc độ giao tiếp cao hơn đang được sử dụng rộng rãi trong các máy tính cá nhân sử dụng các thế hệ chipset mới. Bảng dưới đây so sánh các chuẩn ATA thường sử dụng nhiều với ổ đĩa cứng trong thời gian gần đây. Chuẩn Standard Phát triển (năm) Công bố (năm) Loại bỏ (năm) PIO Modes DMA Modes UDMA Modes Parallel Speed (MBps) Serial Speed (MBps) Đặc tính ATA-1 1988 1994 1999 02 0 8,33 Hộ trợ lên tới 136.9GB; BIOS issues not addressed ATA-2 1993 1996 2001 04 02 16,67 Faster PIO modes; CHS/LBA BIOS translation defined up to 8.4GB; PC-Card ATA-3 1995 1997 2002 04 02 16,67 SMART; improved signal integrity; LBA support mandatory; eliminated single-word DMA modes ATA-4 1996 1998 04 02 02 33,33 Ultra-DMA modes; ATAPI Packet Interface; BIOS hỗ trợ tới 136.9GB ATA-5 1998 2000 04 02 04 66,67 Faster UDMA modes; 80-pin cable with autodetection ATA-6 2000 2002 04 02 05 100 100MBps UDMA mode; extended drive and BIOS support up to 144PB ATA-7 2001 2004 04 02 06 133 150 133MBps UDMA mode; Serial ATA ATA-8 2004 04 02 06 133 150 Phiên bản phụ SMART = Self-Monitoring, Analysis, and Reporting Technology ATAPI = AT Attachment Packet Interface MB = Megabyte; million bytes GB = Gigabyte; billion bytes PB = Petabyte; quadrillion bytes CHS = Cylinder, Head, Sector LBA = Logical block address PIO = Programmed I/O DMA = direct memory access UDMA = Ultra DMA Tốc độ truyền dữ liệu Tốc độ của các chuẩn giao tiếp không có nghĩa là ổ đĩa cứng có thể đáp ứng đúng theo tốc độ của nó, đa phần tốc độ truyền dữ liệu trên các chuẩn giao tiếp thấp hơn so với thiết kế của nó bởi chúng gặp các rào cản trong vấn đề công nghệ chế tạo. Các thông số sau ảnh hưởng đến tốc độ truyền dữ liệu của ổ đĩa cứng: Tốc độ quay của đĩa từ. Số lượng đĩa từ trong ổ đĩa cứng: bởi càng nhiều đĩa từ thì số lượng đầu đọc càng lớn, khả năng đọc/ghi của đồng thời của các đầu từ tại các mặt đĩa càng nhiều thì lượng dữ liệu đọc/ghi càng lớn hơn. Công nghệ chế tạo: Mật độ sít chặt của các track và công nghệ ghi dữ liệu trên bề mặt đĩa (phương từ song song hoặc vuông góc với bề mặt đĩa): dẫn đến tốc độ đọc/ghi cao hơn. Dung lượng bộ nhớ đệm: Ảnh hưởng đến tốc độ truyền dữ liệu tức thời trong một thời điểm. Bảng so sánh sau tốc độ giữa các vùng ở các ổ cứng khác nhau dưới đây sẽ giúp chúng ta nhận ra một số yếu tố ảnh hưởng đến tốc độ truyền dữ liệu của ổ đĩa cứng. Ổ đĩa cứng Ultra-ATA/100 Hitachi (IBM) Deskstar 120GXP Vùng Sectors/Track Tốc độ quay (vòng/phút) Tốc độ truyền dữ liệu (MB/giây) Vùng ngoài 928 7.200 57,02 Vùng trong 448 7.200 27,53 Trung bình 688 7.200 42,27 Ổ đĩa cứng Maxtor DiamondMax D540X-4G120J6 120GB ATA Vùng ngoài 896 5.400 41,29 Vùng trong 448 5.400 20,64 Trung bình 672 5.400 30,97 Như vậy ta thấy rằng tốc độ truyền dữ liệu thực sự ở mức trung bình 42,27 MBps ở ổ đĩa có giao tiếp Ultra-ATA/100 (với tốc độ thiết kế truyền dữ liệu 100 MBps) chỉ gần bằng 1/2 so với tốc độ giao tiếp. Kích thước Kích thước của ổ đĩa cứng được chuẩn hoá tại một số kích thước để đảm bảo thay thế lắp ráp vừa với các máy tính. Kích thước ổ đĩa cứng thường được tính theo inch (") Kích thước vỏ ngoài các loại ổ đĩa cứng: xem bảng. Sự sử dụng điện năng Đa số các ổ đĩa cứng của máy tính cá nhân sử dụng hai loại điện áp nguồn: 5 Vdc và 12 Vdc (DC hoặc dc: Loại điện áp một chiều). Các ổ đĩa cứng cho máy tính xách tay có thể sử dụng chỉ một loại điện áp nguồn 5 Vdc. Các ổ đĩa cứng gắn trong các thiết bị số cầm tay khác có thể sử dụng các nguồn có mức điện áp thấp hơn với công suất thấp. Điện năng cung cấp cho các ổ đĩa cứng phần lớn phục vụ cho động cơ quay các ổ đĩa, phần còn lại nhỏ hơn cung cấp cho bo mạch của ổ đĩa cứng. Tuỳ từng loại động cơ mà chúng sử dụng điện áp 12V hoặc 5 Vdc hơn (thông qua định mức tiêu thụ dòng điện của nó tại các mức điện áp này). Trên mỗi ổ đĩa cứng đều ghi rõ các thông số về dòng điện tiêu thụ của mỗi loại điện áp sử dụng để đảm bảo cho người sử dụng tính toán công suất chung. Ổ đĩa cứng thường tiêu thụ điện năng lớn nhất tại thời điểm khởi động của hệ thống (hoặc thời điểm đĩa cứng bắt đầu hoạt động trở lại sau khi tạm nghỉ để tiết kiệm điện năng) bởi sự khởi động của động cơ đồng trục quay các đĩa từ, cũng giống như động cơ điện thông thường, dòng điện tiêu thụ đỉnh cực đại của giai đoạn này có thể gấp 3 lần công suất tiêu thụ bình thường. Ổ cứng thông thường lấy điện trực tiếp từ nguồn máy tính, với các ổ đĩa cứng ngoài có thể sử dụng các bộ cung cấp điện riêng kèm theo hoặc chúng có thể dùng nguồn điện cung cấp qua các cổng giao tiếp USB. Các thông số khác KÍCH THƯỚC VỎ CÁC LOẠI Ổ CỨNG CAO RỘNG DÀI THỂ TÍCH Loại 5,25 Dùng trong các máy tính các thế hệ trước 3,25" (82,6mm) 5,75" (146,0mm) 8" (203,2mm) 149,5 ci (2449,9 cc) 1,63" (41,3mm) 5,75" (146,0mm) 8" (203,2mm) 74,8 ci (1224,9 cc) Loại 3,5” Thường sử dụng đối với máy tính cá nhân, máy trạm, máy chủ 1,63" (41,3mm) 4" (101,6mm) 5,75" (146,0mm) 37,4 ci (612,5 cc) 1,00" (25,4mm) 4" (101,6mm) 5,75" (146,0mm) 23,0 ci (376,9 cc) Loại 2,5” Thường sử dụng đối với máy tính xách tay 19,0mm (0,75") 70,0mm (2,76") 100,0mm (3,94") 133,0 cc (8,1 ci) 17,0mm (0,67") -nt- -nt- 119,0 cc (7,3 ci) 12,7mm (0,50") -nt- -nt- 88,9 cc (5,4 ci) 12,5mm (0,49") -nt- -nt- 87,5 cc (5,3 ci) 9,5mm (0,37") -nt- -nt- 66,5 cc (4,1 ci) 8,5mm (0,33") -nt- -nt- 59,5 cc (3,6 ci) Loại 1,8" hoặc nhỏ hơn dùng trong các thiết bị kỹ thuật số cá nhân 9,5mm (0,37") 70,0mm (2,76") 60,0mm (2,36") 39,9 cc (2,4 ci) 7,0mm (0,28") -nt- -nt- 29,4 cc (1,8 ci) Loại 1,8" PC Card 8,0mm (0,31") 54,0mm (2,13") 78,5mm (3,09") 33,9 cc (2,1 ci) 5,0mm (0,20") -nt- -nt- 21,2 cc (1,3 ci) Loại 1,0" Micro Device 5,0mm (0,20") 42,8mm (1,69") 36,4mm (1,43") 7,8 cc (0,5 ci) Các thông số dưới đây những người sử dụng thường ít chú ý bởi chúng thường không ảnh hưởng nhiều đến hiệu suất làm việc của ổ cứng. Các thông số này không nên lấy làm chỉ tiêu so sánh giữa các ổ đĩa cứng trong sự lựa chọn trong sự sử dụng thông thường. Độ ồn Độ ồn của ổ đĩa cứng là thông số được tính bằng dB, chúng được đo khi ổ đĩa cứng đang làm việc bình thường. Ổ đĩa cứng với các đặc trưng hoạt động là các chuyển động cơ khí của các đĩa từ và cần di chuyển đầu đọc, do đó chúng không tránh khỏi phát tiếng ồn. Do ổ đĩa cứng thường có độ ồn thấp hơn nhiều so với bất kỳ một quạt làm mát hệ thống nào đang làm việc nên người sử dụng có thể không cần quan tâm đến thông số này. Những tiếng “lắc tắc” nhỏ phát ra trong quá trình làm việc của ổ cứng một cách không đều đặn được sinh ra bởi cần đỡ đầu đọc/ghi di chuyển và dừng đột ngột tại các vị trí cần định vị để làm việc. Âm thanh này có thể giúp người sử dụng biết được trạng thái làm việc của ổ đĩa cứng mà không cần quan sát đèn trạng thái HDD. Chu trình di chuyển Chu trình di chuyển của cần đọc/ghi (Load/Unload cycle) được tính bằng số lần chúng khởi động từ vị trí an toàn đến vùng làm việc của bề mặt đĩa cứng và ngược lại. Thông số này chỉ một số hữu hạn những lần di chuyển mà có thể sau số lần đó ổ đĩa cứng có thể gặp lỗi hoặc hư hỏng. Sau mỗi phiên làm việc (tắt máy), các đầu từ được di chuyển đến một vị trí an toàn nằm ngoài các đĩa từ nhằm tránh sự va chạm có thể gây xước bề mặt lớp từ tính, một số ổ đĩa có thiết kế cần di chuyển đầu đọc tự động di chuyển về vị trí an toàn sau khi ngừng cấp điện đột ngột. Nhiều người sử dụng năng động có thói quen ngắt điện trong một phiên làm việc trên nền DOS (bởi không có sự tắt máy chính thống) rồi tháo ổ đĩa cứng cho các công việc khác, quá trình di chuyển có thể gây va chạm và làm xuất hiện các khối hư hỏng (bad block). Chu trình di chuyển là một thông số lớn hơn số lần khởi động máy tính (hoặc các thiết bị sử dụng ổ đĩa cứng) bởi trong một phiên làm việc, ổ đĩa cứng có thể được chuyển sang chế độ tạm nghỉ (stand by) để tiết kiệm điện năng nhiều lần. Chịu đựng sốc Chịu đựng sốc (Shock - half sine wave): Sốc (hình thức rung động theo nửa chu kỳ sóng, thường được hiểu là việc giao động từ một vị trí cân bằng đến một giá trị cực đại, sau đó lại trở lại vị trí ban đầu) nói đến khả năng chịu đựng sốc của ổ đĩa cứng khi làm việc. Với các ổ cứng cho máy tính xách tay hoặc các thiết bị kỹ thuật số hỗ trợ cá nhân hay các ổ đĩa cứng ngoài thì thông số này càng cao càng tốt, với các ổ đĩa cứng gắn cho máy tính cá nhân để bàn thì thông số này ít được coi trọng khi so sánh lựa chọn giữa các loại ổ cứng bởi chúng đã được gắn cố định nên hiếm khi xảy ra sốc. Nhiệt độ và sự thích nghi Tất cả các thiết bị dựa trên hoạt động cơ khí đều có thể bị thay đổi thông số nếu nhiệt độ của chúng tăng lên đến một mức giới hạn nào đó (sự giãn nở theo nhiệt độ luôn là một đặc tính của kim loại), do đó cũng như nhiều thiết bị khác, nhiệt độ là một yếu tố ảnh hưởng đến quá trình làm việc của ổ đĩa cứng nhất là bên trong nó các chuyển động cơ khí cần tuyệt đối chính xác. Nhiệt độ làm việc của ổ đĩa cứng thường là từ 0 cho đến 40 độ C, điều này thường phù hợp với nhiều môi trường khác nhau, tuy nhiên không chỉ có vậy: độ ẩm là yếu tố liên quan và kết hợp với môi trường tạo thành một sự phá hoại ổ đĩa cứng. Ổ cứng thường có các lỗ (chứa bộ lọc không khí) để cân bằng áp suất với bên ngoài, do đó nếu như không khí trong môi trường chứa nhiều hơi nước, sự ngưng tụ hơi nước thành các giọt hoặc đóng băng ở đâu đó bên trong ổ đĩa cứng có thể làm hư hỏng ổ nếu ta hình dung được tốc độ quay của nó lớn thế nào và khoảng cách giữa đầu từ với bề mặt làm việc của đĩa từ nhỏ đến đâu. Chính vì vậy trước khi đưa một ổ đĩa cứng vào làm việc lần đầu tiên (tháo bỏ vỏ nhựa bọc kín nó khi sản xuất) trong thiết bị hoặc ổ đĩa cứng đã sử dụng được đưa đến từ một môi trường khác đến một nơi làm việc mới (có nhiệt độ môi trường cao hơn), nên đặt nó vào khoang chứa trong một số thời gian nhất định trước khi kết nối các dây cấp nguồn và cáp dữ liệu để chúng làm việc. Thời gian thích nghi đủ lớn để để đảm bảo cho: Các giọt nước bị bay hơi hoặc các cụm băng tuyết biến thành hơi nước và cân bằng với môi trường bên ngoài. Đảm bảo sự đồng đều về môi trường bên trong và bên ngoài của ổ đĩa cứng, tránh sự biến đổi (do nhiệt độ thay đổi đột ngột) với các thiết bị cơ khí bên trong khi nhiệt độ của ổ đĩa cứng tăng lên sau một thời gian hoạt động. Thời gian thích nghi cần thiết: xem bảng. Nhiệt độ trước khi hoạt động Thời gian cần thích nghi (giờ) +40°F (+4°C) 13 +30°F (-1°C) 15 +20°F (-7°C) 16 +10°F (-12°C) 17 0°F (-18°C) 18 -10°F (-23°C) 20 -20°F (-29°C) 22 -30°F (-34°C) hoặc nhỏ hơn 27 Tương tự việc đưa một máy tính xách tay từ ngoài trời ở xứ lạnh vào trong phòng làm việc ấm áp cũng nên để thời gian chờ như vậy bởi trong máy tính xách tay cũng có các ổ đĩa cứng - trừ trường hợp khi ở ngoài trời (xứ lạnh) máy đang hoạt động (đảm bảo nó không bị đóng băng tuyết bên trong ổ đĩa cứng).Với nhiệt độ theo bảng ta có thể thấy rằng khí hậu ở Việt Nam hoặc các nước gần xích đạo khác có nhiệt độ trung bình cao có lẽ ít cần có thời gian thích ứng trước khi đưa ổ đĩa cứng vào sử dụng (trừ những vùng có thể có nhiệt độ thấp và xuất hiện tuyết như Sa Pa ở Việt Nam)Với sự làm mát ổ đĩa cứng, xem thêm phần thông tin thêm của bài. Các số thông số về sản phẩm Phần dưới đây giải thích một số thông số khác của các ổ đĩa cứng. Model: Ký hiệu về kiểu sản phẩm của ổ đĩa cứng, model có thể được sử dụng chung cho một lô sản phẩm cùng loại có các đặc tính và thông số giống như nhau. Thông thường mỗi hãng có một cách ký hiệu riêng về thông số model để có thể giải thích sơ qua về một số thông số trên ổ đĩa cứng đó.Serial number: Mã số sản phẩm, mỗi ổ đĩa cứng có một số hiệu này riêng. Thông số này thường chứa đựng thông tin đã được quy ước riêng của hãng sản xuất về thời gian sản xuất hoặc đơn thuần chỉ là thứ tự sản phẩm khi được sản xuất.Firmware revision: Thông số về phiên bản firmware đang sử dụng hiện thời của ổ đĩa cứng. Thông số này có thể thay đổi nếu người sử dụng nâng cấp các phiên bản firmware của ổ đĩa cứng (nhưng việc nâng cấp này thường rất hiếm khi xảy ra).Một số hãng sản xuất phần mềm có thể sử dụng các thông số trên của ổ đĩa cứng để nhận dạng tình trạng bản quyền của phần mềm trên duy nhất một máy tính, tuy nhiên cách này không được áp dụng rộng rãi do việc đăng ký phức tạp, không thuận tiện cho quá trình nâng cấp ổ đĩa cứng của người sử dụng. Thiết đặt các chế độ hoạt động của đĩa cứng Thiết đặt phần cứng thông qua cầu đấu Cầu đấu (tạm dịch từ jumper) là một bộ phận nhỏ trên ổ đĩa cứng, chúng có tác dụng thiết đặt chế độ làm việc của các ổ đĩa cứng. Thiết đặt kênh Lựa chọn các kênh trên cable IDE: Các ổ đĩa cứng theo chuẩn giao tiếp ATA thường sử dụng hai kênh (trên cùng một cáp truyền dữ liệu), chúng có thể được đặt là kênh chính (Master) hoặc kênh phụ (Slave). Việc thiết lập chỉ đơn giản cần cắm các cầu đấu vào đúng vị trí của chúng trên các chân cắm. Về vị trí, chúng luôn được hướng dẫn trên phần nhãn hoặc viết tắt cạnh cầu đấu như sau: MA (hoặc chỉ M): Master, SL (hoặc chỉ S): Slave; CS (hoặc chỉ C): Cable select (tự động lựa chọn theo cáp truyền dữ liệu). Để giúp ổ đĩa cứng hoạt động tốt hơn, nên chọn các ổ đĩa cứng chứa các phân vùng có cài hệ điều hành làm kênh chính, các ổ đĩa cứng vật lý có tính dùng phụ, dùng cho lưu trữ hoặc các tập tin không được truy cập thường xuyên nên đặt tại ổ phụ (slave). Thiết đặt chuẩn giao tiếp Một số ổ đĩa cứng sử dụng giao tiếp SATA thế hệ thứ 2 (300 MBps) có thể hoạt động phù hợp hơn với bo mạch chủ chỉ hỗ trợ giao tiếp SATA thế hệ đầu tiên (150 MBps) bằng cách đổi các cầu đấu thiết đặt. Hướng dẫn về cách đổi có thể được ghi trên nhãn đĩa hoặc chỉ có thể tìm thấy trong các phần hướng dẫn tại website của hãng sản xuất. Thiết đặt phần mềm Thiết đặt phần mềm ở đây là các cài đặt, phân hoạch trên các ổ đĩa cứng giúp cho ổ đĩa cứng làm việc. Trong phạm vi bài viết về Ổ đĩa cứng, các mục dưới đây được trình bày tóm lược. [sửa] Phân vùng (Partition) Phân vùng (partition): là tập hợp các vùng ghi nhớ dữ liệu trên các cylinder gần nhau với dung lượng theo thiết đặt của người sử dụng để sử dụng cho các mục đích sử dụng khác nhau. Sự phân chia phân vùng giúp cho ổ đĩa cứng có thể định dạng các loại tập tin khác nhau để có thể cài đặt nhiều hệ điều hành đồng thời trên cùng một ổ đĩa cứng. Ví dụ trong một ổ đĩa cứng có thể thiết lập một phân vùng có định dạng FAT/FAT32 cho hệ điều hành Windows 9X/Me và một vài phân vùng NTFS cho hệ điều hành Windows NT/2000/XP/Vista với lợi thế về bảo mật trong định dạng loại này (mặc dù các hệ điều hành này có thể sử dụng các định dạng cũ hơn). Phân chia phân vùng không phải là điều bắt buộc đối với các ổ đĩa cứng để nó làm việc (một vài hãng sản xuất máy tính cá nhân nguyên chiếc chỉ thiết đặt một phân vùng duy nhất khi cài sẵn các hệ điều hành vào máy tính khi bán ra), chúng chỉ giúp cho người sử dụng có thể cài đặt đồng thời nhiều hệ điều hành trên cùng một máy tính hoặc giúp việc quản lý các nội dung, lưu trữ, phân loại dữ liệu được thuận tiện và tối ưu hơn, tránh sự phân mảnh của các tập tin. Những lời khuyên dưới đây giúp sử dụng ổ đĩa cứng một cách tối ưu hơn: Phân vùng chứa hệ điều hành chính: Thường nên thiết lập phân vùng chứa hệ điều hành tại các vùng chứa phía ngoài rìa của đĩa từ (outer zone) bởi vùng này có tốc độ đọc/ghi cao hơn, dẫn đến sự khởi động hệ điều hành và các phần mềm khởi động và làm việc được nhanh hơn. Phân vùng này thường được gán tên là C . Phân vùng chứa hệ điều hành không nên chứa các dữ liệu quan trọng bởi chúng dễ bị virus tấn công (hơn các phân vùng khác), việc sửa chữa khắc phục sự cố nếu không thận trọng có thể làm mất toàn bộ dữ liệu tại phân vùng này. Phân vùng chứa dữ liệu thường xuyên truy cập hoặc thay đổi: Những tập tin đa phương tiện (multimedia) nếu thường xuyên được truy cập hoặc các dữ liệu làm việc khác nên đặt tại phân vùng thứ hai ngay sau phân vùng chứa hệ điều hành. Sau khi quy hoạch, nên thường xuyên thực thi tác vụ chống phân mảnh tập tin trên phân vùng này. Phân vùng chứa dữ liệu ít truy cập hoặc ít bị sửa đổi: Nên đặt riêng một phân vùng chứa các dữ liệu ít truy cập hoặc bị thay đổi như các bộ cài đặt phần mềm. Phân vùng này nên đặt sau cùng, tương ứng với vị trí của nó ở gần khu vực tâm của đĩa (inner zone). Có nhiều phần mềm có thể sử dụng để quy hoạch các phân vùng đĩa cứng: fdisk trong DOS, Disk Management của Windows (2000, XP) và một số phần mềm của các hãng khác, nhưng có thể chúng chỉ đơn thuần là tạo ra các phân vùng, xoá các phân vùng mà không thay đổi kích thước phân vùng đang tồn tại, chúng thường làm mất dữ liệu trên phân vùng thao tác. Partition Magic (hiện tại của hãng Symantec) thường được nhiều người sử dụng bởi tính năng mạnh mẽ, giao diện thân thiện (sử dụng chuột, giống các phần mềm trong môi trường 32 bit) và đặc biệt là không làm mất dữ liệu khi thao tác với các phân vùng Định dạng của phân vùng Lựa chọn định dạng các phân vùng là hành động tiếp sau khi quy hoạch phân vùng ổ đĩa cứng. Tuỳ thuộc vào các hệ điều hành sử dụng mà cần lựa chọn các kiểu định dạng sử dụng trên ổ đĩa cứng. Một số định dạng sử dụng trong các hệ điều hành họ Windows có thể là: FAT (File Allocation Table): Chuẩn hỗ trợ DOS và các hệ điều hành họ Windows 9X/Me (và các hệ điều hành sau ). Phân vùng FAT hỗ trợ độ dài tên 11 ký tự (8 ký tự tên và 3 ký tự mở rộng) trong DOS hoặc 255 ký tự trong các hệ điều hành 32 bit như Windows 9X/Me. FAT có thể sử dụng 12 hoặc 16 bit, dung lượng tối đa một phân vùng FAT chỉ đến 2 GB dữ liệu. FAT32 (File Allocation Table, 32-bit): Tương tự như FAT, nhưng nó được hỗ trợ bắt đầu từ hệ điều hành Windows 95 OSR2 và toàn bộ các hệ điều hành sau này. Dung lượng tối đa của một phân vùng FAT32 có thể lên tới 2 TB (2.048 GB). NTFS (Windows NT File System): Được hỗ trợ bắt đầu từ các hệ điều hành họ NT/2000/XP/Vista. Một phân vùng NTFS có thể có dung lượng tối đa đến 16 exabytes. Không chỉ có thế, các hệ điều hành họ Linux sử dụng các loại định dạng tập tin riêng. Format Format là sự định dạng các vùng ghi dữ liệu của ổ đĩa cứng. Tuỳ theo từng yêu cầu mà có thể thực hiện sự định dạng này ở các thể loại cấp thấp hay sự định dạng thông thường. Format cấp thấp Format cấp thấp (low-level format) là sự định dạng lại các track, sector, cylinder (bao gồm cả các ‘khu vực” đã trình bày trong phần sector). Format cấp thấp thường được các hãng sản xuất thực hiện lần đầu tiên trước khi xuất xưởng các ổ đĩa cứng. Người sử dụng chỉ nên dùng các phần mềm của chính hãng sản xuất để format cấp thấp (cũng có các phần mềm của hãng khác nhưng có thể các phần mềm này không nhận biết đúng các thông số của ổ đĩa cứng khi tiến hành định dạng lại). Khi các ổ cứng đã làm việc nhiều năm liên tục hoặc có các khối hư hỏng xuất hiện nhiều, điều này có hai khả năng: sự lão hoá tổng thể hoặc sự rơ rão của các phần cơ khí bên trong ổ đĩa cứng. Cả hai trường hợp này đều dẫn đến một sự không đáng tin cậy khi lưu trữ dữ liệu quan trọng trên nó, do đó việc định dạng cấp thấp có thể kéo dài thêm một chút thời gian làm việc của ổ đĩa cứng để lưu các dữ liệu không mấy quan trọng. Format cấp thấp giúp cho sự đọc/ghi trên các track đang bị lệch lạc trở thành phù hợp hơn khi các track đó được định dạng lại (có thể hiểu đơn giản rằng nếu đầu đọc/ghi bắt đầu làm việc dịch về một biên phía nào đó của track thì sau khi format cấp thấp các đầu đọc/ghi sẽ làm việc tại tâm của các track mới). Không nên lạm dụng format cấp thấp nếu như ổ đĩa cứng của bạn đang hoạt động bình thường bởi sự định dạng lại này có thể mang lại sự rủi ro: Sự thao tác sai của người dùng, các vấn đề xử lý trong bo mạch của ổ đĩa cứng. Nếu như một ổ đĩa cứng xuất hiện một vài khối hư hỏng thì người sử dụng nên dùng các phần mềm che dấu nó bởi đó không chắc đã do sự hoạt động rơ rão của phần cứng. Một người viết bài này đã sử dụng một ổ đĩa cứng từ những năm 1995 cho đến nay nhưng chưa thấy có hiện tượng rơ rão cơ khí như nhắc đến trong bài. Format thông thường Định dạng mức cao (high-level format) là các hình thức format thông thường mà đa phần người sử dụng đã từng thực hiện (chúng chỉ được gọi tên như vậy để phân biệt với format cấp thấp) bởi các lệnh sẵn có trong các hệ điều hành (DOS hoặc Windows), hình thức format này có thể có hai dạng: Format nhanh (quick): Đơn thuần là xoá vị trí lưu trữ các ký tự đầu tiên để hệ điều hành hoặc các phần mềm có thể ghi đè dữ liệu mới lên các dữ liệu cũ. Nếu muốn format nhanh: sử dụng tham số “ /q” với lệnh trong DOS hoặc chọn “quick format” trong hộp lựa chọn của lệnh ở hệ điều hành Windows. Format thông thường. Xoá bỏ các dữ liệu cũ và đồng thời kiểm tra phát hiện khối hư hỏng (bad block), đánh dấu chúng để chúng không còn được vô tình sử dụng đến trong các phiên làm việc sắp tới (nếu không có sự đánh dấu này, hệ điều hành sẽ ghi dữ liệu vào khối hư hỏng mà nó không báo lỗi - tuy nhiên khi đọc lại dữ liệu đã ghi đó mới là vấn đề nghiêm trọng).Đối với bộ nhớ Flash thì cũng không nên format nhiều dễ làm hỏng ổ đĩa. Tham số khi format Ở dạng format cấp thấp, các thông số thiết đặt phần nhiều do phần mềm của hãng sản xuất xác nhận khi bạn nhập vào các thông số nhìn thấy được trên ổ đĩa cứng (Model, serial number...) nên các thông số này cần tuyệt đối chính xác nhằm tránh sự thất bại khi tiến hành. Ở dạng format thông thường, nếu là hình thức format nhanh (quick) thì các thông số được giữ nguyên như lần format gần nhất, còn lại có một thông số mà người tiến hành format cần cân nhắc lựa chọn là kích thước đơn vị (nhỏ nhất) của định dạng là cluster (trong Windows XP mục Allocation unit size trong hộp thoại lựa chọn format). Kích thước cluster có thể lựa chọn bắt đầu từ 512 byte bởi không thể nhỏ hơn kích thước chứa dữ liệu của một sector (với kích thước một sector thông dụng nhất là 512 byte). Các kích thước còn lại có thể là: 1024, 2048, 4096 với quy định giới hạn của từng loại định dạng (FAT/FAT32 hay NTFS). Sự lựa chọn quan trọng nhất là phân vùng cần định dạng sử dụng chủ yếu để chứa các tập tin có kích thước như thế nào. Để hiểu hơn về lựa chọn, xin xem một ví dụ sau: Nếu lưu một tập tin text chỉ có dung lượng 1 byte (bạn hãy thử tạo một tập tin text và đánh 1 ký tự vào đó) thì trên ổ đĩa cứng sẽ phải dùng đến ít nhất 512 byte để chứa tập tin này với việc lựa chọn kích thước đơn vị là 512 byte, còn nếu lựa chọn cluster bằng 4096 byte thì kích thước lãng phí sẽ là 4096 - 1 = 4095 byte. Nếu như lựa chọn kích thước cluster có kích thước khá nhỏ thì các bảng FAT hoặc các tập tin MFT (Master File Table) trong định dạng NTFS lại trở lên lớn hơn. Như vậy ta nhận thấy: Nếu ổ đĩa cứng sử dụng cho các tập tin do các phần mềm văn phòng thường ngày (Winword, bảng tính excel...), nên chọn kích thước nhỏ: 1024 hoặc 2048 byte. Nếu chứa các tập tin là dạng các bộ cài đặt phần mềm hoặc các tập tin video, nên chọn kích thước này lớn hơn. Đặc biệt ở các ổ cứng nhỏ dành cho thiết bị di động thì sự lựa chọn thường là 512 byte (đây cũng thường là lựa chọn khi format các loại thẻ nhớ). Windows có thể cho bạn biết một tập tin kích thước thực (size) của nó và kích thước chứa trên đĩa (size on disk) của nó bằng cách bấm chuột phải và chọn Properties. Điều này giúp bạn có thể nhận ra sự lãng phí đã nêuPhần mềm Partition Magic của Symantec có thể so sánh việc lựa chọn kích thước các cluster trên một phân vùng tồn tại dữ liệu. Ứng dụng Ổ đĩa cứng được sử dụng chủ yếu trên các máy tính như: máy tính cá nhân, máy tính xách tay, máy chủ, máy trạm… Với các thiết bị lưu trữ dữ liệu chuyên dụng như: các thiết bị sao lưu dữ liệu tự động hoặc các thiết bị sao lưu dữ liệu dùng cho văn phòng/cá nhân bán trên thị trường hiện nay đều sử dụng các ổ đĩa cứng. Khi ổ đĩa cứng có dung lượng ngày càng lớn, chi phí tính theo mỗi GB dữ liệu rẻ đi khiến chúng hoàn toàn có thể thay thế các hệ thống sao lưu dữ liệu dự phòng trước đây như: băng từ (mà ưu điểm nổi bật của chúng là chi phí cho mỗi GB thấp). Ngày nay, một số hãng sản xuất ổ đĩa cứng đã có thể chế tạo các đĩa cứng rất nhỏ. Các ổ đĩa cứng nhỏ này có thể được sử dụng thiết bị kỹ thuật số hỗ trợ cá nhân, thiết bị cầm tay, điện thoại di động, máy ảnh số, máy nghe nhạc cá nhân, tai nghe không dây, máy quay phim kỹ thuật số (thay cho băng từ và đĩa quang với ưu thế về tốc độ ghi và sự soạn thảo hiệu ứng tức thời)... Những thiết bị gia dụng mới xuất hiện đáp ứng nhu cầu của con người cũng được sử dụng các ổ đĩa cứng như: Thiết bị ghi lại các chương trình ti vi cho phép người sử dụng không bỏ sót một kênh yêu thích nào bởi chúng ghi lại một kênh thứ hai trong khi người sử dụng xem kênh thứ nhất, hoặc đặt lịch trình ghi lại khi vắng nhà. Một số thông tin và ghi chú trong bài Nhiều người sử dụng thường gọi ổ C, ổ D…nhưng thực chất chúng chỉ là các phân vùng (partition) trong ổ đĩa cứng để tiện cho việc phân chia khu vực lưu trữ dữ liệu theo các mục đích riêng. Cách hiểu này nhiều khi được sử dụng ở các bài viết chính thống, tuy nhiên ở các bài viết cẩn thận, người truyền đạt thường sử dụng từ “ổ vật lý” để nói đến toàn bộ khối ổ đĩa cứng, nhằm tránh sự hiểu nhầm đến các “ổ luận lý”. Một số người sử dụng đã làm mát ổ đĩa cứng bằng cách gắn các quạt làm mát thổi trực tiếp vào bo mạch của chúng (thổi từ dưới lên, có một số nơi lại bán sẵn các các vỉ làm mát kiểu này), điều này hoàn toàn không cần thiết bởi bo mạch của ổ đĩa thường không tiêu thụ công suất quá lớn khiến các linh kiện của chúng nóng lên và bo mạch được làm mát không thể hấp thụ nhiệt từ các đĩa từ, động cơ của ổ đĩa cứng. Mặt khác điều này còn làm cho bo mạch chứa nhiều bụi sau một thời gian làm việc, chúng có thể trở thành môi trường dẫn điện nếu thời tiết trở nên ẩm thấp. Cách tốt để tản nhiệt ổ đĩa cứng là thổi không khí vào chúng từ phía trên hoặc phía ngang. Một số vỏ máy tính đã thiết kế quạt làm mát thổi song song với ổ đĩa cứng lấy gió từ phía mặt trước của thùng máy. Trong quá trình làm việc, hệ điều hành hoặc các phần mềm kiểm tra đĩa cứng, nếu chúng đọc và ghi dữ liệu tại một vị trí nào đó không thành công trong vài lần, chúng sẽ đánh dấu “khối hư hỏng” vào đó nhằm tránh sự ghi dữ liệu tiếp theo vào vị trí này. Nhiều trường hợp bởi một lý do khác mà hệ điều hành có thể đánh dấu sai. Các hãng sản xuất Có rất nhiều hãng, công ty sản xuất ổ đĩa cứng, có thể kể đến một số thương hiệu như sau (sắp xếp ngẫu nhiên không theo quy luật): IBM, Seagate, Hitachi, Western Digital, Quantum, Maxtor, Fujitsu, Corner, Samsung. Một ổ đĩa cứng IBM trước đây. Có thể nhận thấy: Động cơ được gắn ngoài và truyền chuyển động đến các đĩa từ. Kích thước của chúng khá lớn khi so sánh với các viên gạch lát nền Một ổ đĩa cứng 5,25” có dung lượng 110 MB (bên phải), bên trái là một ổ đĩa cứng 2,5” thông dụng cho máy tính xách tay ngày nay với dung lượng có thể lên tới 160 GB hoặc cao hơn (đồng xu bên cạnh có giá trị so sánh về kích thước thực của các loại ổ đĩa cứng) Bên trong một ổ đĩa cứng (thông dụng ngày nay) sau khi mở nắp và tháo bỏ các tấm đĩa dữ liệu. Phần ở giữa là động cơ liền trục (spindle motor). Bên trái (gần đó) là "đầu đọc/ghi" và "Cần di chuyển đầu đọc". Các thành phần của ổ đĩa cứng (thông dụng ngày nay) được tháo rời. (Bấm vào hình để xem kích thước lớn hơn hoặc vào đây để xem kích thước thực: 5071x3173) Cấu tạo bên trong của một ổ đĩa cứng thông dụng ngày nay Minh hoạ về các track, cylinder, sector… So sánh cách đọc dữ liệu trên mặt đĩa khi sử dụng công nghệ NCQ và khi không sử dụng công nghệ NCQ Hình minh hoạ về nguyên lý đọc/ghi bằng từ trên bề mặt đĩa cứng với phương thức từ nằm ngang head: Đầu đọc/ghi di chuyển trên bề mặt đĩa; grain: Các thành phần hạt từ và phương của chúng sắp xếp đồng hướng trong một khoảng. R, N: vị trí từ ngược/thuận (theo quy ước); Magnetic Field lines: Đường sức từ (khi không có đầu đọc/ghi); Binary value encoded: Giá trị tín hiệu nhị phân (0101…) nhận được So sánh hai công nghệ ghi dữ liệu theo chiều song song và vuông góc với bề mặt đĩa từ. Qua hình minh hoạ cho thấy việc ghi dữ liệu theo phương vuông góc sẽ tiết kiệm không gian nên cho các ổ đĩa cứng có dung lượng lớn hơn Sự phân bố đômen từ trên bề mặt ổ đĩa cứng khi chụp ảnh bằng kính hiển vi lực từ.(Ảnh tham khảo về tính chất từ của ổ đĩa cứng) Hai đầu cắm của giao tiếp SATA trên bo mạch chủ Bo mạch đồ họa Một bo mạch đồ họa loại rời Bo mạch đồ họa (graphics adapter), card màn hình (graphics card), thiết bị đồ họa, card màn hình, đều là tên gọi chung của thiết bị chịu trách nhiệm xử lý các thông tin về hình ảnh trong máy tính. Bo mạch đồ họa thường được kết nối với màn hình máy tính giúp người sử dụng máy tính có thể giao tiếp với máy tính. Mọi máy tính cá nhân, máy tính xách tay đều phải có bo mạch đồ họa. Các loại bo mạch đồ họa Có thể có nhiều cách phân loại bo mạch đồ họa khác nhau: theo dạng thức vật lý, theo loại GPU, theo bus giao tiếp với bo mạch chủ (PCI, AGP, PCI Express...) và thậm chí còn theo hãng sản xuất thiết bị Để thuận tiện cho các cách gọi ở phần sau trong bài viết này, tạm phân các loại bo mạch đồ họa theo dạng thức vật lý của chúng. Theo cách này bo mạch đồ họa chỉ gồm hai loại: Bo mạch đồ họa được tích hợp trên bo mạch chủ: có thể sử dụng chip đồ họa riêng, bộ nhớ đồ họa riêng hoặc cũng có thể là một phần của chipset cầu bắc và sử dụng bộ nhớ của RAM hệ thống. Bo mạch đồ họa độc lập, gọi tắt là bo mạch đồ họa rời, liên kết với bo mạch chủ thông qua các khe cắm mở rộng. Thành phần cơ bản Bộ xử lý đồ họa (GPU) hoặc chức năng đồ họa tích hợp Bộ xử lý đồ họa ("Graphic Processing Unit", viết tắt là GPU) là thành phần rất quan trọng quyết định đến sức mạch đồ họa, nó có ý nghĩa như CPU trong máy tính. GPU thường được hàn/dập chắc chắn vào bo mạch đồ họa rời. Đối với các bo mạch đồ họa tích hợp trên bo mạch chủ chúng có thể ở dạng GPU gắn liền trên bo mạch chủ hoặc được tích hợp chung vào [[chipset]. Hiện nay các bo mạch đồ họa rời thường sử dụng GPU của hai hãng sản xuất: nVIDIA ATI (Trước đây là một hãng độc lập, nay đã được hãng AMD mua lại) Ngoài hai hãng này một số hãng khác cũng sản xuất chip xử lý đồ họa (SIS, Trident) nhưng các công ty đó hiện không thành công trong khẳng định vị thế của mình trên thị trường chip xử lý đồ họa. Đối với dạng tính năng đồ họa được tích hợp vào chipset hoặc gắn liền trên bo mạch chủ: Intel: Với các chipset: 810, 815, 845, 865, 910, 915, 945, 946, 965...mà phân biệt các chipset tích hợp đồ họa thường được ký hiệu thêm chữ "G" (cùng một ký tự khác hoặc không có) ở sau ký hiệu chipset (Ví dụ: 915G, 915GV, 915GL...) ATI: Radeon IGP 9100, Radeon IGP 9100 PRO, Radeon Xpress 200 (có các phiên bản cho CPU Intel và AMD khác nhau), Radeon IGP 320... VIA: P4M800, P4M800 Pro, K8M800, K8M890, KM400 SiS: SiS661FX, SiS661GX, SiS761GL, SiS761GX, SiS760, SiS741 nVIDIA: nForce2 Bộ nhớ đồ họa Để xử lý các tác vụ đồ họa và lưu trữ kết quả tính toán tạm thời, bo mạch đồ họa có các bộ nhớ riêng hoặc các phần bộ nhớ rành riêng cho chúng từ bộ nhớ chung của hệ thống, trong các trường hợp khác bộ nhớ cho xử lý đồ họa được cấp phát với dung lượng thay đổi từ bộ nhớ hệ thống. Dung lượng của bộ nhớ đồ họa một phần quyết định đến: độ phân giải tối đa, độ sâu màu và tần số làm tươi mà bo mạch đồ họa có thể xuất ra màn hình máy tính. Do vậy dung lượng bộ nhớ đồ họa là một thông số cần quan tâm khi lựa chọn một bo mạch đồ họa. Dung lượng bộ nhớ đồ họa có thể có số lượng thấp (1 đến 32 Mb) trong các bo mạch đồ họa trước đây, 64 đến 128 Mb trong thời gian hai đến ba năm trước đây và đến nay đã thông dụng ở 256 Mb với mức độ cao hơn cho các bo mạch đồ họa cao cấp (512 đến 1Gb và thậm trí còn nhiều hơn nữa). Tuy nhiên, dung lượng không phải là một yếu tố quyết định tất cả, khi mà việc tăng dung lượng bộ nhớ đã không trở thành hữu ích cho bo mạch đồ họa, các nhà thiết kế đã chuyển hướng sử dụng các bộ nhớ có tốc độ cao hơn, do đó đến nay đã có rất nhiều chuẩn bộ nhớ đồ họa đã từng được sử dụng: FPM DRAM, VRAM, WRAM, EDO DRAM, SDRAM, MDRAM, SGRAM, DDR SDRAM, DDR-II SDRAM, và gần đây là GDDR-3 SDRAM, GDDR-4 SDRAM. Có một điều rằng bo mạch đồ họa khác nhau lại sử dụng các tốc độ đồ họa thay đổi tuỳ thuộc vào bo mạch đó dùng GPU nào. Chúng không được sử dụng ở tốc độ tối đa theo như thiết kế. Một số hãng sản xuất có thể thiết kế và thiết đặt sẵn (trong Video Bios - xem phần sau) để bo mạch đồ họa làm việc với tốc độ bộ nhớ cao hơn so với mặc định (overlock). Bus kết nối Bo mạch đồ họa thường sử dụng các đường truyền dữ liệu theo các chuẩn nhất định (bus) để truyền dữ liệu giữa bo mạch đồ họa với hệ thống máy tính, các bus có thể là PCI Express X16 (mới nhất), AGP (gần đây), PCI (trước khi ra đời AGP), hoặc các bus cổ hơn nữa trong thời gian trước đây (ISA 8 bit, ISA 16 bit, VESA 32 bit). Đặc điểm của các bo mạch đồ họa sử dụng các bus được giới thiệu sơ lược như sau: Bo mạch đồ họa sử dụng bus PCI: Bo mạch đồ họa sử dụng bus AGP: có các thế hệ 2x, 4x và 8x. Bo mạch đồ họa sử dụng bus PCI Express: Trình điều khiển Bo mạch đồ họa đều cần sử dụng một trình điều khiển riêng đối với các hệ điều hành khác nhau, nếu không có các trình điều khiển thì dù có một bo mạch đồ họa hiện đại nhất hệ thống chỉ xuất ra hình ảnh có có độ phân giải thấp, độ sâu màu thấp và với tốc độ làm tươi hạn chế. Trình điều khiển được cần được cài đặt vào hệ điều hành sau khi kết nối bo mạch đồ họa với hệ thống (trong một số trường hợp, trình điều khiển hệ thống đã được tích hợp sẵn với hệ điều hành thì người sử dụng có thể không cần đến việc cài đặt trình điều khiển). Do sự quan trọng của trình điều khiển mà nó là một thành phần cơ bản, không thể thiếu trong bo mạch đồ họa. Đôi khi trình điều khiển chưa được hoàn thiện hay tồn tại một số lỗi dẫn đến hiệu năng của bo mạch đồ họa bị giảm ít hay nhiều tuỳ mức độ, hoặc xuất ra hình ảnh không đúng(sọc,răng cưa,rác...) RAMDAC RAMDAC (Digital-to-Analog Converter): Có chức năng chuyển đổi các tín hiệu số sang tín hiệu tương tự để hiển thị trên màn hình máy tính. Tốc độ của RAMDAC có thể cao hơn tốc độ làm việc của bộ xử lý đồ họa. Tốc độ RAMDAC trong thời điểm năm 2007 thường vào khoảng 300-500 Mhz. RAMDAC có thể là một bộ phận tách rời hoặc tích hợp sẵn vào các bộ xử lý đồ họa nếu là bo mạch rời. Video BIOS Cũng giống như tính năng của BIOS ở bo mạch chủ, video bios chứa toàn bộ thông tin thiết lập về phần cứng của bo mạch đồ họa. Video Bios còn giúp cho bo mạch đồ họa họat động ngay khi máy tính bắt đầu khởi động trong quá trình POST - trước khi trình điều khiển của hệ điều hành được nạp. Video bios của bo mạch đồ họa ở dạng một ROM, có thể được hàn định vị trực tiếp vào bo mạch đồ họa, có thể ở dạng gắn trên đế cắm (đối với các bo mạch đồ họa trước đây). Nhiều overlocker hoặc hacker thường thay đổi Video Bios của bo mạch đồ họa để ép xung chúng (overlock). Các kiểu kết nối Kết nối đầu ra của bo mạch đồ họa đến các màn hình máy tính hoặc các thiết bị hiển thị, sử dụng hình ảnh khác có thể gồm các loại sau đây: SVGA: Đầu kết nối thông dụng nhất cho đến năm 2007. Đây là kiểu kết nối với tín hiệu đầu ra kiểu tương tự dành cho các màn hình máy tính kiểu CRT, các máy chiếu, màn hình máy tính kiểu tinh thể lỏng tầm trung. DVI: Kiểu kết nối tín hiệu số: Dành cho các màn hình máy tính tinh thể lỏng tầm trung và cao cấp. S-Video: Kiểu kết nối đầu ra tín hiệu tương tự dành cho các thiết bị video dân dụng: Ti vi, đầu phát video (băng từ, VCD, DVD), máy quay, máy chiếu... Video in: Đường kết nối dành riêng cho ngõ vào video ở một số bo mạch đồ họa có tính năng mở rộng "VIVO" (Video-In-Video-Out), với tính năng này bo mạch đồ họa có một phần tính năng của một bo mạch kỹ xảo. Các hàm API trong đồ họa Sự xuất hiện của nhiều bộ xử lý đồ họa với các công nghệ khác nhau không thống nhất theo chuẩn nhất định khiến cho các nhà phát triển phần mềm và trò chơi trên máy tính gặp khó khăn về vấn đề tương thích. Để thuận tiện cho các nhà viết phần mềm đồ họa và trò chơi trên máy tính cần thống nhất các hàm API sử dụng chung mà các bo mạch đồ họa cần phải tương thích với chúng các hãng đã đưa ra hai chuẩn chung là DiretcX và OpenGL. DirectX: được hãng Microsoft phát triển vào những năm 1996 nhằm hướng các nhà lập trình sử dụng chúng để lập trình các game cho hệ điều hành Windows 95 (hệ điều hành mang tích cách mạng trong thời bấy giờ, bắt đầu cách ly việc các phần mềm can thiệp trực tiếp vào phần cứng) thay cho thói quen lập trình trên nền DOS mà họ dễ dàng can thiệp vào phần cứng. Sự phát triển các phiên bản DirectX từ đó đến phiên bản DirectX 9c mang tính kế thừa, nhưng đến phiên bản gần đây nhất - DirectX 10 (chỉ sử dụng trong Windows Vista và các hệ điều hành khác nếu có của Microsoft sau này) có một sự thay đổi lớn được xem như viết trên một nền tảng mới hoàn toàn.Đến cuối năm 2007, chỉ có một số bo mạch đồ họa hỗ trợ DirectX 10 khi sử dụng các bộ xử lý đầu họa(có ký hiệu)đầu 8XXX (8800, 8600...) của nVIDIA và 2XXX (2900, 2600...) của ATI (Các bo mạch đồ họa sử dụng các GPU cũ hỗ trợ đến DirectX 9c vẫn có thể làm việc với Windows Vista) OpenGL được Silicon Graphics phát triển những năm 1990. (Xem thêm OpenGL) Cung cấp nguồn trực tiếp từ nguồn máy tính Các bo mạch đồ họa (rời) trước đây thường lấy điện trực tiếp từ bo mạch chủ nhưng với nhu cầu xử lý ngày càng cao, ngày nay các bộ xử lý đồ họa cần tiêu tốn một lượng điện năng lớn (có thể trên 150 W) mà các mạch dẫn trên mạch in của bo mạch chủ sẽ không thể đáp ứng nổi các dòng điện lớn như vậy. Để cung cấp các công suất lớn cho bộ xử lý đồ họa, các bo mạch đồ họa sử dụng cách thức cung cấp điện trực tiếp từ nguồn máy tính thông qua các đầu cắm thiết kế riêng. Đầu cắm thông dụng cung cấp điện cho bo mạch đồ họa hiện nay thường là 6 hoặc 8 chân. Tản nhiệt ở bo mạch đồ họa Do phải xử lý một khối lượng công việc lớn khi chơi game hoặc thực hiện các tác vụ liên quan nên bộ xử lý đồ họa thường toả một lượng nhiệt lớn, cũng như CPU trong máy tính, các bo mạch đồ họa cũng cần tản nhiệt cho GPU. Cách thức tản nhiệt với các GPU thường là: Sử dụng tấm, phiến tản nhiệt (không dùng quạt) để tản nhiệt tự nhiên. Hình thức này trước kia chỉ phù hợp với các GPU có xung nhịp thấp. Hiện nay đã có những hãng (như Asus) rất thành công trong việc tạo những phiến tản nhiệt tĩnh lặng (tản nhiệt silent) cho bo mạch đồ họa trung, cao cấp, tận dụng được quạt của CPU và case giải nhiệt qua những ống đồng và các phiến dẫn nhiệt. Sử dụng tấm, phiến tản nhiệt kết hợp dùng quạt. Tản nhiệt bằng chất lỏng: Rất hiếm gặp hình thức này ở các bo mạch đồ họa khi xuất xưởng. Thông thường hình thức này do người dùng thay thế cách cách tản nhiệt nguyên bản của bo mạch đồ họa để ép xung. Do bộ nhớ đồ họa cũng phát sinh nhiệt nên trong các cách tản nhiệt trên, tấm tản nhiệt thường bao trùm và tản nhiệt luôn cho bộ nhớ đồ họa tuy rằng một số bo mạch đã không tản nhiệt cho bộ nhớ đồ họa hoặc thiết kế các phiến tản nhiệt riêng. Đa màn hình Sử dụng nhiều màn hình giúp mở rộng Desktop và hiển thị nhiều ứng dụng cùng lúc Hai bo mạch đồ họa được gắn trên cùng một bo mạch chủ khi hoạt động ở chế độ crossfire cho ra chỉ một màn hình Cùng một bo mạch đồ họa có thể cho phép xuất ra nhiều màn hình đồng thời mà không nhất thiết chúng có hình ảnh giống hệt nhau. Với các bộ xử lý đồ họa mạnh mẽ hiện nay có thể cho phép một bo mạch đồ họa xuất ra hai màn hình để mở rộng desktop trong hệ điều hành. Trong trường hợp hệ thống có nhiều bo mạch đồ họa cũng có thể mở rộng ra nhiều màn hình đồng thời (giả sử có hai bo mạch đồ họa, mỗi chiếc xuất ra hai màn hình thì tổng số sẽ có thể có 4 màn hình cùng hiển thị). Hai (hoặc nhiều hơn) màn hình có thể giúp người sử dụng mở đồng thời nhiều ứng dụng mà vẫn quan sát được các tiến trình đang diễn ra, nhiều cửa sổ để tham chiếm, duyệt web...một số trò chơi cũng cho phép xuất ra nhiều màn hình cùng lúc để hiển thị các góc nhìn khác nhau. Đồ họa kép Không dừng lại ở các bộ xử lý đồ họa cao cấp, bộ nhớ đồ họa dung lượng lớn với tốc độ làm việc cao, các hãng sản xuất đã thiết kế các kiểu sử dụng nhiều bo mạch đồ họa trên cùng một máy tính. Trong các thời gian trước đây, người ta cũng có thể sử dụng đồng thời nhiều bo mạch đồ họa nhưng chỉ dừng lại ở công dụng phát ra nhiều màn hình đồng thời. Công nghệ đồ họa kép hiện nay cho phép nhiều bộ xử lý đồ họa cùng xử lý một vấn đề đồ họa do đó chất lượng và tốc độ xử lý tăng mạnh hơn (có thể hình dung nhiều bộ xử lý đồ họa tương tự việc bộ xử lý đa nhân hoặc nhiều bộ xử lý trên cùng một bo mạch chủ). Hai hãng sản xuất chip đồ họa ATI và nVIDIA đã có các chuẩn riêng như sau Công nghệ Crossfire của ATI Crossfire có thể là: Hai bộ xử lý đồ họa cùng có mặt trên một bo mạch đồ họa hoặc hai bo mạch đồ họa (trở lên) cùng có mặt trên một bo mạch chủ. Nếu thuộc loại hai bo mạch đồ họa (trở lên) cắm vào bo mạch chủ thì yêu cầu bo mạch chủ phải có hai khe cắm kiểu PCI Express X16 (chúng có thể không đồng thời hỗ trợ X16) và bo mạch chủ phải hỗ trợ. Hai bo mạch đồ họa ở đây phải liên kết với nhau, có thể qua dây kết nối đầu ra (dây cắm thiết kế riêng gồm 3 đầu, hai đầu cắm vào hai bo mạch đồ họa, đầu còn lại cắm vào màn hình máy tính), có thể sử dụng cầu nối giữa hai bo mạch đồ họa hoặc có thể sử dụng bằng phần mềm thiết đặt trình điều khiển. Công nghệ SLI của nVIDIA Gần tương tự như công nghệ Crossfire của ATI, nhưng công nghệ SLI của nVIDIA yêu cầu khắt khe hơn về bo mạch chủ: Các bo mạch chủ hỗ trợ công nghệ này phải sử dụng các chipset của chính hãng nVIDIA. Bo mạch chủ Thuật ngữ Bo mạch chủ thường dùng nhiều nhất trong ngành công nghiệp máy tính nói chung như một từ rành riêng mặc dù có rất nhiều thiết bị khác cũng có thể bản mạch chính được gọi là "bo mạch chủ". Bài viết này nói đến Bo mạch chủ trong các máy tính nói chung mà trú trọng nhiều hơn là của máy tính cá nhân. Bo mạch chủ của máy tính trong tiếng Anh là motherboard hay mainboard và thường được nhiều người gọi tắt là: mobo, main. Cách thiết bị thường có mặt trên bo mạch chủ Ảnh một bo mạch chủ theo chuẩn ATX Đặc điểm:Bố trí tản nhiệt bằng ống dẫn nhiệt cầu nam-cầu bắc-transistor Có 3 khe PCI Express X16 cho các bo mạch đồ hoạ hoạt động ở chế độ Crossfire Trong các thiết bị điện tử Bo mạch chủ là một bản mạch đóng vai trò là trung gian giao tiếp giữa các thiết bị với nhau. Một cách tổng quát, nó là mạch điện chính của một hệ thống hay thiết bị điện tử. Có rất nhiều các thiết bị gắn trên bo mạch chủ theo cách trực tiếp có mặt trên nó, thông qua các kết nối cắm vào hoặc dây dẫn liên kết, phần này trình bày sơ lược về các thiết bị đó, chi tiết về các thiết bị xin xem theo các liên kết đến bài viết cụ thể về chúng. Chipset cầu bắc cùng với chipset cầu nam sẽ quyết định sự tương thích của bo mạch chủ đối với các CPU Chipset cầu nam BIOS: Thiết bị vào/ra cơ sở, rất quan trọng trong mỗi bo mạch chủ, chúng có thể được thiết đặt các thông số làm việc của hệ thống. BIOS có thể được liên kết hàn dán trực tiếp vào bo mạch chủ hoặc có thể được cắm trên một đế cắm để có thể tháo rời. Các linh kiện, thiết bị khác: Hầu hết còn lại là linh kiện điện tử (giống Kết nối với bo mạch chủ Nguồn máy tính: Không thể thiếu trong hệ thống, nguồn máy tính cung cấp năng lượng cho hệ thống và các thiết bị ngoại vi hoạt động. CPU: Thường được cắm vào bo mạch chủ thông qua các đế cắm (socket) riêng biệt tuỳ theo từng loại CPU (dùng từ "cắm" chỉ là tương đối bởi các đế cắm hiện nay sử dụng tiếp xúc) RAM: Rất quan trọng trong hệ thống máy tính, RAM được cắm trên bo mạch chủ thông qua các khe cắm riêng cho từng thể loại. Bo mạch đồ hoạ: Sử dụng tăng tốc đồ hoạ máy tính, một số bo mạch chủ có thể không sử dụng đến bo mạch đồ hoạ bởi chúng được tích hợp sẵn trên bo mạch chủ. Bo mạch âm thanh: Mở rộng các tính năng âm thanh trên máy tính, một số bo mạch chủ đã được tích hợp sẵn bo mạch âm thanh. Ổ cứng: Không thể thiếu trong hệ thống máy tính cá nhân. Một số máy tính tuân theo chuẩn PC nhưng sử dụng trong công nghiệp có thể không sử dụng đến ổ cứng truyền thống, chúng được sử dụng các loại ổ flash. Ổ CD, ổ DVD: Các ổ đĩa quang. Ổ đĩa mềm: Hiện nay các máy tính cá nhân thường không cần thiết đến chúng, tuy nhiên trong một số hệ thống cũ ổ đĩa mềm vẫn tồn tại thường dùng để sao lưu hay nâng cấp BIOS. Màn hình máy tính: Phục vụ giao tiếp giữa máy tính với người sử dụng. Bàn phím máy tính: Sử dụng nhập dữ liệu và làm việc với máy tính. Chuột (máy tính): Phục vụ điều khiển và làm việc với máy tính. Bo mạch mạng: Sử dụng kết nối với mạng. Bo mạch mạng có thể được tích hợp sẵn trên bo mạch chủ hoặc được cắm vào các khe PCI hoặc ISA (với các hệ thống máy tính cũ trước kia). Modem: Sử dụng kết nối với Internet hoặc một máy tính từ xa. Loa máy tính: Xuất âm thanh ra loa máy tính; Thiết bị này kết nối trực tiếp với các bo mạch chủ được tích hợp bo mạch âm thanh trên nó. Trong trường hợp khác nó kết nối thông qua giao tiếp USB hoặc bo mạch âm thanh rời. Webcam: Sử dụng cho tán ngẫu trực tuyến, hội họp trực tuyến... Máy in: Dùng trích xuất văn bản, hình ảnh ra giấy. Máy quét: Sử dụng số hoá các bức ảnh hoặc văn bản. Thiết bị khác liên quan Vỏ máy tính là thiết bị mà bo mạch chủ cần lắp đặt trong nó cùng với các thiết bị khác (ở trên) cấu thành nên một máy tính hoàn chỉnh. Tuy nhiên đôi khi một số overlocker có thể không cần sử dụng đến thiết bị này nhằm tạo ra hệ thống máy tính dể dàng cho việc tháo lắp, thay đổi và thuận tiện cho việc làm mát các thiết bị của họ. Cấu trúc bo mạch chủ Cấu trúc sử dụng CPU của hãng Intel Cấu trúc bo mạch chủ sử dụng CPU của hãng Intel Cấu trúc một bo mạch chủ tiêu biểu sử dụng CPU của hãng AMD. Điểm khác biệt ở đây là CPU được nối thẳng tới RAM không thông qua Chipset cầu bắc Cấu trúc bo mạch chủ sơ lược giải nghĩa như sau: CPU kết nối với Chipset cầu bắc (North Bridge), tại đây chipset cầu bắc giao tiếp với RAM và bo mạch đồ hoạ. Nói chung, cấu trúc máy tính cá nhân dùng bộ xử lý Intel đến thời điểm năm 2007 CPU sử dụng RAM thông qua chipset cầu bắc. Chipset cầu bắc được nối với chipset cầu nam thông qua bus nội bộ. Do tính chất làm việc "nặng nhọc" của chipset cầu bắc nên chúng thường toả nhiều nhiệt, bo mạch chủ thường có các tản nhiệt cho chúng bằng các hình thức khác nhau. Chipset cầu nam nối với các bộ phận còn lại, bao gồm các thiết bị có tính năng nhập/xuất (I/O) của máy tính bao gồm: các khe mở rộng bằng bus PCI, ổ cứng, ổ quang, USB, Ethernet... Cấu trúc sử dụng CPU của hãng AMD Về cơ bản, cấu trúc bo mạch chủ sử dụng CPU của hãng AMD giống như cấu trúc của bo mạch chủ sử dụng CPU của hãng Intel. AMD cũng như nhiều hãng khác đều chưa đưa ra định hướng riêng của mình mà phải theo cấu trúc của Intel bởi sự phát triển của máy tính cá nhân ngay từ thời điểm sơ khai đã phát triển theo cấu trúc nền tảng của các hãng IBM - Intel. Phần này chỉ nói ra những sự khác biệt nhỏ trong cấu trúc bo mạch chủ sử dụng CPU của AMD so với bo mạch chủ sử dụng CPU của hãng Intel: về một số cấu trúc bo mạch chủ cho bộ xử lý AMD có thể cho phép CPU giao tiếp trực tiếp với RAM mà điều này cải thiện đáng kể sự "thắt cổ chai" thường thấy ở cấu trúc bo mạch chủ sử dụng CPU của hãng Intel. Cấu tạo bản mạch in của bo mạch chủ Bản mạch in của bo mạch chủ có cấu tạo khác biệt một chút so với các bản mạch in của các thiết bị điện tử thường thấy khác. Đa số các bản mạch in ở các mạch điện đơn giản đều có cấu tạo hai mặt (mặt trước và mặt sau) để chứa các đường dẫn trên nó. Do có rất nhiều các đường dẫn hoạt động với tần số khác nhau nên (theo quy tắc chung) bản mạch phải được thiết kế với các đường dẫn không gây nhiễu sang nhau, đây là một điểm khác biệt khiến việc thiết kế bản mạch của bo mạch chủ khác với các bo mạch thông thường. Ở bo mạch chủ, do chứa nhiều linh kiện với các đường dẫn lớn nên chúng được thiết kế từ 3 đến 5 lớp (thậm trí nhiều hơn): Ngoài hai lớp mặt trước và mặt sau thì ở giữa của bo mạch cũng có các đường dẫn. Ngoài tác dụng để cắm và dán các linh kiện trên bề mặt nó, bo mạch chủ còn được thiết kế để truyền một phần nhiệt từ các thiết bị toả nhiệt trên nó và truyền nhiệt ra một diện tích rộng để được làm mát bằng không khí. ASUS là một hãng phần cứng của Đài Loan thường rất thành công trong việc thiết kế tản nhiệt ra bản mạch của bo mạch chủ. Tản nhiệt trên bo mạch chủ Do có nhiều linh kiện có thể phát nhiệt tại trực tiếp hoặc được cắm, gắn trên bo mạch chủ nên vấn đế tản nhiệt rất được coi trọng trong thiết kế. Phương thức tản nhiệt thường thấy trên bo mạch chủ bao gồm: Sử dụng các tấm, phiến tản nhiệt bằng nhôm hoặc đồng độc lập với cách truyền nhiệt tự nhiên ra môi trường xung quanh hoặc tận dụng luồng gió từ quạt CPU thổi ra. Sử dụng quạt tạo sự tản nhiệt cưỡng bức, tuy nhiên cách dùng quạt hiện nay dần ít được dùng bởi sự rủi ro có thể xảy đến khi bo mạch chủ được sử dụng sau vài năm và quạt có thể bị hư hỏng dẫn đến thiết bị được tản nhiệt bằng quạt này sẽ bị hư hỏng. Sử dụng công nghệ ống truyền nhiệt để liên kết các cụm chi tiết cần tản nhiệt với nhau. Các cụm được gắn kết với nhau thường là: Chipset cầu bắc-Chipset cầu nam-Transistor điều tiết điện năng cho CPU và bo mạch chủ. Cho phép sự tản nhiệt bằng nước với các hệ thống tản nhiệt nước gắn ngoài bằng cách thiết kế các đầu cắm ống nước chờ sẵn. Các thiết bị cần tản nhiệt trên bo mạch chủ: Chipset cầu bắc là thiết bị mà bất kỳ bo mạch chủ nào cũng phải tản nhiệt cho nó bởi sự phát nhiệt lớn tỏa ra bởi chúng là cầu nối quan trọng của hệ thống và làm việc liên tục. Nhiều bo mạch chủ tích hợp sẵn bo mạch đồ hoạ trong chipset cầu bắc khiến chúng càng toả nhiệt nhiều hơn. Chipset cầu nam mới được coi trọng sự tản nhiệt trong thời gian gần đây (trước đây chúng thường được để trần mà không được gắn bất kỳ một tấm tản nhiệt nào) bởi các tính năng và thiết năng mở rộng có thể làm nó hoạt động mạnh hơn và phát nhiệt nhiều hơn. Các transistor trường cho phần điều chế nguồn của bo mạch chủ và CPU: Nhiều bo mạch chủ thiết kế áp mặt lưng của các transistor này xuống trực tiếp bo mạch để tản nhiệt ra bo mạch, một số bo mạch chủ thiết kế các tấm phiến tản nhiệt riêng, số ít các bo mạch chủ cao cấp thiết kế ống truyền nhiệt liên kết chúng với các thiết bị tản nhiệt khác. Thiết kế riêng của các nhà sản xuất phần cứng Các nhà sản xuất phần cứng luôn tạo ra các sự thay đổi trong thiết kế cấu trúc của bo mạch chủ nên mỗi hãng khác nhau sẽ tạo ra một sự thay đổi nào đó so với các kiến trúc thông thường để hướng sự chú ý của khách hàng. Chính điều đó đã thúc đẩy công nghệ phát triển, tạo ra sự phát triển không ngừng. Sự thay đổi thiết kế có thể kể đến: Tăng số khe cắm PCI-Express X16 lên 3-4 khe để có thể hoạt động với đồng thời 2-4 bo mạch đồ hoạ hỗ trợ công nghệ CrossFire. Tạo ra những phương thức tản nhiệt hiệu quả. Cho phép ép xung của hệ thống. Thay đổi các loại linh kiện truyền thống bằng các linh kiện tốt hơn, bền hơn và chịu đựng được nhiệt độ cao hơn: Ví dụ việc sử dụng các tụ rắn thay cho tụ hoá thông thường. Các chuẩn bo mạch chủ thông dụng đến năm 2007 Chuẩn ATX Đầu nối nguồn 24 chân theo chuẩn ATX ATX là chuẩn bo mạch chủ thông dụng nhất hiện nay, chúng được phát triển có chọn lọc trên nền các chuẩn cũ (Baby-AT và LPX) với sự thay đổi của thiết kế và liên quan nhiều đến việc thay đổi đầu nối nguồn với nguồn máy tính, tính năng quản lý điện năng thông minh và sự thay đổi nút khởi động một phiên làm việc. Một thay đổi khác là sự tập hợp các cổng kết nối vào/ra về phía sau của hệ thống máy tính cá nhân (bao gồm các khe cắm mở rộng ở phía dưới và cụm cổng vào/ra ở phía trên (I/O connector panel) đối với vỏ máy tính kiểu đứng). Hình minh hoạ đầu tiên của bài viết này là một bo mạch chủ theo chuẩn ATX. Đầu nối nguồn cho bo mạch chủ theo chuẩn ATX: Đầu nối nguồn cho bo mạch chủ theo chuẩn ATX bao gồm hai loại đầu: 20 chân và 24 chân.Hình phần trên: Đầu nối 24 chân cung cấp điện năng cho bo mạch chủ; hình dưới: Đầu nối vào bo mạch chủ cung cấp nguồn +12V cho CPUTheo sự quy ước (như hình) thì các đầu nối 20 chân chỉ khác biệt 4 chân dưới cùng. Nếu bỏ các chân 11, 12, 23, 24 (theo quy ước như hình) thì đầu nối 24 chân trở thành đầu nối 20 chân. Chính vì điều này mà một số nguồn máy tính đã thiết kế loại đầu cắm 20+4 chân phù hợp cho cả hai loại bo mạch chủ. Thay đổi nút Power so với các chuẩn cũ: Nút power ở các chuẩn cũ thuộc thể loại "công tắc", chúng có nguyên lý hoạt động giống như các công tắc bật đèn thông thường trong dân dụng (đây là điều tạo lên sự dễ phân biệt các chuẩn ATX và chuẩn cũ). Theo chuẩn ATX thì nút "Power" trên vỏ máy tính là một nút nhấn "mềm" (chúng tự đàn hồi về trạng thái 0 sau khi bấm), nút này có thể được lựa chọn tuỳ biến thành các chức năng khác nhau khi máy tính đã khởi động vào hệ điều hành (Ví dụ có thể trở thành một trong các nút: Stand by, Hibernate, Shutdown). Chuẩn BTX BTX là một chuẩn mới xuất hiện và thường chỉ dùng cho các hệ thống máy tính cá nhân cao cấp, điểm đặc biệt của bo mạch chủ theo chuẩn này là sự sắp xếp lại vị trí của các thiết bị trên bo mạch chủ nhằm tạo ra sự lưu thông không khí tối ưu trong thùng máy. CPU được chuyển gần ra phía trước của thùng máy cùng với quạt tản nhiệt CPU thiết kế kiểu thổi ngang (song song với bo mạch chủ) sẽ lấy gió từ phía mặt trước của vỏ máy (được thiết kế bắt buộc các lưới thoáng). Cách thiết kế này cải tiến so với chuẩn ATX bởi CPU theo chuẩn ATX có thể sử dụng luồng gió luẩn quẩn nếu không được thiết kế thông thoáng và định hướng gió hợp lý hoặc sử dụng vỏ máy tính theo chuẩn 38°. Luồng gió đầu vào sau khi làm mát CPU có thể tiếp tục làm mát bo mạch đồ hoạ, một phần thoát ra phía sau theo quạt thông gió của vỏ máy tính phía sau, một phần qua RAM để thoát ra ngoài thông qua nguồn máy tính. Kết nối nguồn của chuẩn BTX không có khác biệt so với của chuẩn ATX 24 chân. BTX hiện nay chưa trở thành thông dụng với đa số người dùng do đó các hãng sản xuất phần cứng cũng chưa cho ra đời nhiều loại bo mạch chủ theo chuẩn này. Các chuẩn kích thước của bo mạch chủ Hình ảnh so sánh kích thước các loại bo mạch chủ với các khổ giấy (ví dụ khổ A4) Kích thước của bo mạch chủ thường được chuẩn hoá để đảm bảo tương thích với các vỏ máy tính. Có các loại kích thước sau: Các chuẩn cổ điển trước đây Baby-AT: 216 mm × 254-330 mm Full-size AT: 305 mm × 279–330 mm LPX: 229 mm × 279–330 mm WTX: 355.6 mm × 425.4 mm ITX: 215 mm x 191 mm Các chuẩn hiện tại BTX: 325 x 267 mm microBTX: 264 x 267 mm pico BTX: 203 x 267 mm ATX: 305 x 244 mm mini ATX: 284 x 208 mm microATX: 244 x 244 mm flexATX: 229 x 191 mm Mini-ITX: 170 x 170 mm Kích thước không theo chuẩn Trong một số trường hợp các nhà sản xuất máy tính có thể sản xuất các bo mạch chủ với kích thước riêng của họ nhưng loại này chỉ được lắp ráp tại các máy tính đồng bộ mà không được bán riêng lẻ ra thị trường Hệ thống theo chuẩn BTX Phần cứng Phần cứng, còn gọi là cương liệu (tiếng Anh: hardware), là các cơ phận (vật lý) cụ thể của máy tính hay hệ thống máy tính như là màn hình, chuột, bàn phím, máy in, máy quét, vỏ máy tính, bộ nguồn, bộ vi xử lý CPU, bo mạch chủ, các loại dây nối, loa, ổ đĩa mềm, ổ đĩa cứng, ổ CDROM, ổ DVD, ... Dựa trên chức năng và cách thức hoạt động người ta còn phân biệt phần cứng ra thành: Nhập hay đầu vào (Input): Các bộ phận thu nhập dữ liệu hay mệnh lệnh như là bàn phím, chuột... Xuất hay đầu ra (Output): Các bộ phận trả lời, phát tín hiệu, hay thực thi lệnh ra bên ngoài như là màn hình, máy in, loa, ... Ngoài các bộ phận nêu trên liên quan tới phần cứng của máy tính còn có các khái niệm quan trọng sau đây: Bus: chuyển dữ liệu giữa các thiết bị phần cứng. BIOS (Basic Input Output System): còn gọi là hệ thống xuất nhập cơ bản nhằm khởi động, kiểm tra, và cài đặt các mệnh lệnh cơ bản cho phần cứng và giao quyền điều khiển cho hệ điều hành CPU: bộ phân vi xử lý điều khiển toàn bộ máy tính Kho lưu trữ dữ liệu: lưu giữ, cung cấp, thu nhận dữ liệu Các loại chíp hỗ trợ: nằm bên trong bo mạch chủ hay nằm trong các thiết bị ngoại vi của máy tính các con chip quan trọng sẽ giữ vai trò điều khiển thiết bị và liên lạc với hệ điều hành qua bộ điều vận hay qua phần sụn Bộ nhớ: là thiết bị bên trong bo mạch chủ giữ nhiệm vụ trung gian cung cấp các mệnh lệnh cho CPU và các dữ liệu từ các bộ phận như là BIOS, phần mềm, kho lưu trữ, chuột đồng thời tải về cho các bộ phận vừa kể kết quả các tính toán, các phép toán hay các dữ liệu đã/đang được xử lý các cổng vào/ra Nguồn máy tính Nguồn máy tính (tiếng Anh: Power Supply Unit hay PSU) là một thiết bị cung cấp điện năng cho bo mạch chủ, ổ cứng và các thiết bị khác..., đáp ứng năng lượng cho tất cả các thiết bị phần cứng của máy tính hoạt động. Một bộ nguồn cho máy tính ATX được tháo vỏ Đặc điểm Nguồn máy tính là loại nguồn phi tuyến, khác với nguồn tuyến tính ở chỗ: Nguồn tuyến tính (thường cấu tạo bằng biến áp với cuộn sơ cấp và cuộn thứ cấp) cho điện áp đầu ra phụ thuộc vào điện áp đầu vào. Nguồn phi tuyến cho điện áp đầu ra ổn định ít phụ thuộc vào điện áp đầu vào trong giới hạn nhất định cho phép. Nguyên lý hoạt động Từ nguồn điện dân dụng (110Vac/220Vac xoay chiều với tần số 50/60Hz) vào PSU qua các mạch lọc nhiễu loại bỏ các nhiễu cao tần, được nắn thành điện áp một chiều. Từ điện áp một chiều này được chuyển trở thành điện áp xoay chiều với tần số rất cao, qua một bộ biến áp hạ xuống thành điện áp xoay chiều tần số cao ở mức điện áp thấp hơn, từ đây được nắn trở lại thành một chiều. Sở dĩ phải có sự biến đổi xoay chiều thành một chiều rồi lại thành xoay chiều và trở lại một chiều do đặc tính của các biến áp: Đối với tần số cao thì kích thước biến áp nhỏ đi rất nhiều so với biến áp ở tần số điện dân dụng 50/60Hz. Nguồn máy tính được lắp trong các máy tính cá nhân, máy chủ, máy tính xách tay. Ở máy để bàn hoặc máy chủ, bạn có thể nhìn thấy PSU là một bộ phận có rất nhiều đầu dây dẫn ra khỏi nó và được cắm vào bo mạch chủ, các ổ đĩa, thậm chí cả các cạc đồ hoạ cao cấp. Ở máy tính xách tay PSU có dạng một hộp nhỏ có hai đầu dây, một đầu nối với nguồn điện dân dụng, một đầu cắm vào máy tính xách tay. Nguồn máy tính cung cấp đồng thời nhiều loại điện áp: +12V, - 12V, +5V, +3,3V... với dòng điện định mức lớn. Vai trò Nguồn máy tính là một bộ phận rất quan trọng đối với một hệ thống máy tính, tuy nhiên có nhiều người sử dụng lại ít quan tâm đến. Sự ổn định của một máy tính ngoài các thiết bị chính (bo mạch chủ, bộ xử lý, bộ nhớ truy cập ngẫu nhiên, ổ cứng...) phụ thuộc hoàn toàn vào nguồn máy tính bởi nó cung cấp năng lượng cho các thiết bị này hoạt động. Một nguồn chất lượng kém, không cung cấp đủ công suất hoặc không ổn định sẽ có thể gây lên sự mất ổn định của hệ thống máy tính (cung cấp điện áp quá thấp cho các thiết bị, có nhiều nhiễu cao tần gây sai lệch các tín hiệu trong hệ thống), hư hỏng hoặc làm giảm tuổi thọ các thiết bị (nếu cung cấp điện áp đầu ra cao hơn điện áp định mức). Các kết nối đầu ra Nguồn máy tính không thể thiếu các đầu dây cắm cho các thiết bị sử dụng năng lượng cung cấp từ nó. Các kết nối đầu ra của nguồn máy tính bao gồm: Đầu cắm vào bo mạch chủ (motherboard connector): là đầu cắm có 20 hoặc 24 chân - Tuỳ thể loại bo mạch chủ sử dụng. Phiên bản khác của đầu cắm này là 20+4 chân: Phù hợp cho cả bo mạch dùng 20 và 24 chân. Đầu cắm cấp nguồn cho bộ xử lý trung tâm (CPU) (+12V power connector) có hai loại: Loại bốn chân và loại tám chân (thông dụng là bốn chân, các nguồn mới thiết kế cho các bo mạch chủ đời mới sử dụng loại tám chân. Đầu cắm cho ổ cứng, ổ quang (giao tiếp ATA) (peripheral connector): Gồm bốn chân. Đầu cắm cho ổ đĩa mềm: Gồm bốn chân. Đầu cắm cho ổ cứng, ổ quang giao tiếp SATA: Gồm bốn dây. Đầu cắm cho các cạc đồ hoạ cao cấp: Gồm sáu chân. (Lưu ý: Một số đầu cắm khác đã có ở các nguồn thế hệ cũ (chuẩn AT) đã được loại bỏ trên mười năm, không được đưa vào đây) Các đầu cắm cho bo mạch chủ và thiết bị ngoại vi được nối với các dây dẫn màu để phân biệt đường điện áp, thông thường các dây dẫn này được hàn trực tiếp vào bản mạch của nguồn. Tuy nhiên có một số nhà sản xuất đã thay thế việc hàn sẵn vào bản mạch của nguồn bằng cách thiết kế các đầu cắm nối vào nguồn. Việc cắm nối có ưu điểm là loại bỏ các dây không cần dùng đến để tránh quá nhiều dây nối trong thùng máy gây cản trở luồng gió lưu thông trong thùng máy, nhưng theo tác giả (TMA) thì nó cũng có nhược điểm: Tạo thêm một sự tiếp xúc thứ hai trong quá trình truyền dẫn điện, điều này làm tăng điện trở và có thể gây nóng, tiếp xúc kém dẫn đến không thuận lợi cho quá trình truyền dẫn. Quy ước màu dây và cấp điện áp trong nguồn máy tính Quy ước chung về các mức điện áp theo màu dây trong nguồn máy tính như sau: Màu đen: Dây chung, Có mức điện áp quy định là 0V; Hay còn gọi là GND, hoặc COM. Tất cả các mức điện áp khác đều so với dây này. Màu cam: Dây có mức điện áp: +3,3 V Màu đỏ: Dây có mức điện áp +5V. Màu vàng: Dây có mức điện áp +12V (thường quy ước đường +12V thứ nhất đối với các nguồn chỉ có một đường +12V) Màu xanh Blue: Dây có mức điện áp -12V. Màu xanh Green: Dây kích hoạt sự hoạt động của nguồn. Nếu nguồn ở trạng thái không hoạt động, hoặc không được nối với máy tính, ta có thể kích hoạt nguồn làm việc bằng cách nối dây kích hoạt (xanh green) với dây 0V (Hay COM, GND - màu đen). Đây là thủ thuật để kiểm tra sự hoạt động của nguồn trước khi nguồn được lắp vào máy tính. Dây màu tím: Điện áp 5Vsb (5V standby): Dây này luôn luôn có điện ngay từ khi đầu vào của nguồn được nối với nguồn điện dân dụng cho dù nguồn có được kích hoạt hay không (Đây cũng là một cách thử nguồn hoạt động: Đo điện áp giữa dây này với dây đen sẽ cho ra điện áp 5V trước khi kích hoạt nguồn hoạt động). Dòng điện này được cung cấp cho việc khởi động máy tính ban đầu, cung cấp cho con chuột, bàn phím hoặc các cổng USB. Việc dùng đường 5Vsb cho bàn phím và con chuột tuỳ theo thiết kế của bo mạch chủ - Có hãng hoặc model dùng điện 5Vsb, có hãng dùng 5V thường. Nếu hãng hoặc model nào thiết kế dùng đường 5Vsb cho bàn phím, chuột và các cổng USB thì có thể thực hiện khởi động máy tính từ bàn phím hoặc con chuột máy tính. Một số dây khác: Khi mở rộng các đường cấp điện áp khác nhau, các nguồn có thể sử dụng một số dây dẫn có màu hỗn hợp: Ví dụ các đường +12V2 (đường 12V độc lập thứ 2); +12V3 (đường 12V độc lập thứ 3)có thể sử dụng viền màu khác nhau(tuỳ theo hãng sản xuất) như vàng viền trắng, vàng viền đen. Công suất và hiệu suất Công suất nguồn được tính trên nhiều mặt: Công suất cung cấp, công suất tiêu thụ và công suất tối đa...Hiệu suất của nguồn thường không được ghi trên nhãn hoặc không được cung cấp khi nguồn máy tính được bán cho người tiêu dùng, do đó cần lưu ý đến cả hai thông số này. Công suất Công suất tiêu thụLà công suất mà một nguồn máy tính tiêu thụ với nguồn điện dân dụng. Công suất tiêu thụ được tính bằng W là công suất mà người sử dụng máy tính phải trả tiền cho nhà cung cấp điện (tất nhiên phải tính thêm công suất của màn hình máy tính trong trường hợp máy tính thuộc loại máy tính cá nhân) Công suất cung cấpcủa nguồn được tính bằng tổng công suất mà nguồn cấp cho bo mạch chủ, CPU và các thiết bị hoạt động. Công suất cung cấp thường phụ thuộc vào số lượng và các đặc tính làm việc của thiết bị. Công suất cung cấp thường nhỏ hơn công suất cực đại của nguồn. Công suất cung cấp của nguồn máy tính ở các thời điểm và chế độ làm việc khác nhau là khác nhau, nó không bình quân và trung bình như nhiều người hiểu. Các thiết bị thường xuyên thay đổi công suất tiêu thụ thường là: CPU: Có nhiều chế độ tiêu thụ nhất: Khi làm việc ít, khi giảm tốc độ (thường thấy ở các CPU cho máy tính xách tay, các CPU dòng Core 2 duo của Intel...), khi làm việc tối đa. Cạc đồ hoạ: Khi cần xử lý một khối lượng đồ hoạ lớn (khi chơi games, xử lý ảnh, biên tập video...) cạc tiêu tốn hơn mức bình thường. Chipset cầu bắc (NB): linh kiện tiêu thụ năng lượng nhiều nhất trên bo mạch chủ, nếu bo mạch chủ tích hợp sẵn cạc đồ hoạ thì chipset cầu bắc tiêu tốn năng lượng hơn, và giao động mức tiêu thụ tuỳ theo chế độ đồ hoạ. Ổ quang: Khi đọc hoặc ghi sẽ tiêu tốn năng lượng hơn mức bình thường. Các quạt trong máy tính nếu có cơ chế tự động điều chỉnh tốc độ theo nhiệt độ của hệ thống. Công suất cực đại tức thờicủa nguồn máy tính là công suất đạt được trong một thời gian ngắn. Công suất này có thể chỉ đạt được trong một khoảng thời gian rất nhỏ - tính bằng mili giây (ms). Rất nhiều hãng sản xuất nguồn máy tính đã dùng công suất cực đại tức thời để dán lên nhãn sản phẩm của mình. Công suất cực đại liên tụcLà công suất lớn nhất mà nguồn có thể đạt được khi làm việc liên tục trong nhiều giờ, thậm trí nhiều ngày. Công suất này rất quan trọng khi chọn mua nguồn máy tính bởi nó quyết định đến sự làm việc ổn định của máy tính. Thông thường một hệ thống máy tính không nên thường xuyên sử dụng đến công suất cực đại liên tục bởi khi này một trong các linh kiện điện tử trong nguồn máy tính làm việc đạt đến (hoặc xấp xỉ) ngưỡng cực đại của nó. Hiệu suất Hiệu suất của nguồn máy tính được xác định bằng hiệu số giữa công suất cung cấp và công suất tiêu thụ của nguồn. Mọi thiết bị chuyển đổi năng lượng từ các dạng khác nhau đều không thể đạt hiệu suất 100%, phần năng lượng bị mất đi đó bị biến thành các dạng năng lượng khác không mong muốn (cơ năng, nhiệt năng, từ trường, điện trường...) do đó hiệu suất của một thiết bị rất quan trọng. Trong nguồn máy tính, năng lượng tiêu hao không mong muốn chủ yếu là nhiệt năng và từ trường, điện trường. Các bộ nguồn máy tính tốt thường có hiệu suất đạt trên 80%. Thông thường các nguồn được kiểm nghiệm đạt hiệu suất trên 80% được dán nhãn "sản phẩm xanh - bảo vệ môi trường" hoặc phù hợp chuẩn 80+. Chiếm đa số các nguồn máy tính trong các máy tính tự lắp ráp hiện nay trên thị trường Việt Nam là các nguồn chất lượng thấp hoặc ở mức trung bình. Hiệu suất các nguồn này chỉ đạt nhỏ hơn 50-70%. Điều khiển nguồn máy tính Đa số các nguồn máy tính chất lượng từ loại thấp cho đến cao cấp hiện nay đều là các nguồn dạng tự động làm việc mà không cần can thiệp bởi phần mềm hay con người (ngoại trừ công tắc bật tắt, công tắc gạt đặt mức điện áp, cơ chế mở của bo mạch chủ). Tuy nhiên có một số loại nguồn đặc biệt có thể cho phép người sử dụng can thiệp vào quá trình làm việc, thiết lập các thông số điện áp đầu ra...thông qua phần mềm điều khiển. Các nguồn này cho phép tinh chỉnh chế độ làm việc, theo dõi công suất. Hãng Gigabyte(Đài Loan) mới đây (thời điểm 2007) tung ra một số model cho phép thực hiện điều này. Giải nhiệt trong nguồn máy tính Nguồn máy tính là một bộ phận biến đổi điện áp, sử dụng các linh kiện điện tử nên thường sinh ra nhiệt. Vấn đề giải nhiệt (hoặc gọi một cách khác là tản nhiệt) trong nguồn máy tính rất được các hãng sản xuất coi trọng. Các linh kiện điện tử cần tản nhiệt cưỡng bức (gắn tấm tản nhiệt): Tranzitor: Hai (hoặc nhiều hơn) tranzitor công suất đầu tiên. Các đi ốt nắn thành dòng một chiều. Cầu chỉnh lưu đầu vào (thường không gắn tản nhiệt đối với các nguồn công suất thấp) hoặc 04 đi ốt chỉnh lưu cầu. Các linh kiện khác không cần giải nhiệt hoặc giải nhiệt tự nhiên bằng luồng gió cưỡng bức qua nguồn: IC (ít toả nhiệt), tụ điện , điện trở (thường), biến áp (có sinh nhiệt nhưng ít hơn nên có thể giải nhiệt tự nhiên) và các linh kiện khác. Các linh kiện điện tử được giải nhiệt bằng các tấm tản nhiệt kim loại áp sát trực tiếp vào linh kiện. Các tấm tản nhiệt kim loại thường sử dụng dùng hợp kim nhôm. Các tấm tản nhiệt thường có hình dạng phức tạp để có diện tích tiếp xúc với không khí lớn nhất, có định hướng đón gió từ các quạt làm mát nguồn. Để lưu thông không khí, tạo điều kiện trao đổi nhiệt giữa các tấm tản nhiệt và không khí, nguồn được bố trí ít nhất một quạt để làm mát cưỡng bức. Phân loại cách cách giải nhiệt cho nguồn dùng không khí lưu thông như sau: Hút gió ra khỏi nguồn: Thông dụng nhất là các quạt có kích thước 80 mm gắn phía sau nguồn để hút khí từ thùng máy - qua nguồn để thổi ra ngoài. Đa số các nguồn chất lượng thấp hoặc trung bình sử dụng cách này (tuy nhiên cũng có loại nguồn công suất lớn vẫn sử dụng cách này - nhưng rất hãn hữu). Thổi gió vào nguồn: Dùng một quạt đường kính 120 mm (hoặc lớn hơn, tuỳ model và hãng sản xuất) thổi gió vào nguồn. Mặt sau nguồn bố trí các ô thoáng để gió thổi qua nguồn ra ngoài thùng máy. Một số nguồn dùng hai quạt nhỏ hơn thay thế cho một quạt lớn. Cách này sẽ tạo luồng gió tập trung hơn tại các điểm cần tản nhiệt. Ưu điểm đối với việc sử dụng một quạt 120 mm là: Tốc độ quạt đường kính lớn thấp hơn quạt đường kính nhỏ nếu cùng một lưu lượng: Do đó nguồn ít ồn hơn. Quạt thường gần CPU nên hút gió nóng sau khi làm mát CPU thổi ra ngoài, tạo sự lưu thông hợp lý với các bo mạch chủ theo chuẩn ATX (chiếm đa số hiện nay). Kết hợp cả hai cách trên: Sử dụng với các nguồn công suất lớn (thường gặp ở một số nguồn công suất thực > 600W - 700 W) Đa số các nguồn chất lượng tốt đều có cơ chế điều chỉnh tốc độ quạt, khi nguồn làm việc với công suất thấp, các quạt quay chậm để đảm bảo không ồn. Khi công suất đạt đến mức cao hoặc cực đại thì các quạt quay ở tốc độ cao. Đa số các quạt cho nguồn là loại quạt dùng bạc, ở một số nguồn chất lượng tốt dùng quạt dùng vòng bi. Quạt dùng vòng bi thường bền hơn (đạt khoảng 400.000 giờ làm việc), quay nhanh hơn, ít ồn hơn so với quạt dùng bạc (quạt dùng bạc có tuổi thọ cao nhất khoảng 100.000 giờ làm việc). Lọc nhiễu trong nguồn máy tính Trong một bộ nguồn máy tính thường có các vị trí lọc nhiễu như sau: Lọc nhiễu đầu vào: Lọc bỏ các loại nhiễu trước khi biến đổi thành điện áp một chiều (trước cầu chỉnh lưu). Lọc nhiễu đầu vào thường dùng mạch tụ điện và cuộn cảm để loại bỏ toàn bộ nhiễu cao tần của lưới điện. Lọc nhiễu trung gian: Các khâu lọc nhiễu mạch giữa của nguồn - biến đổi từ phần điện một chiều sang xoay chiều tần số cao. Lọc nhiễu đầu ra: Lọc nhiễu sau biến áp cao tần: Thường sử dụng các cuộn cảm kết hợp với tụ (hoá) cho các đầu ra. Bộ nguồn máy tính tốt Nếu như đáp ứng được các yếu tố sau: Sự ổn định của điện áp đầu ra: không sai lệch quá -5 đến + 5% so với điện áp danh định khi mà nguồn hoạt động đến công suất thiết kế. Điện áp đầu ra là bằng phẳng, không nhiễu. Hiệu suất làm việc cao, đạt trên 80% (Công suất đầu ra/đầu vào đạt >80%) Nguồn không gây ra từ trường, điện trường, nhiễu sang các bộ phận khác xung quanh nó và phải chịu đựng được từ trường, điện trường, nhiễu từ các vật khác xung quanh tác động đến nó. Khi hoạt động toả ít nhiệt, gây rung, ồn nhỏ. Các dây nối đầu ra đa dạng, nhiều chuẩn chân cắm, được bọc dây gọn gàng và chống nhiễu. Đảm bảo hoạt động ổn định với công suất thiết kế trong một thời gian hoạt động dài Dải điện áp đầu vào càng rộng càng tốt, đa số các nguồn chất lượng cao có dải điện áp đầu vào từ 90 đến 260Vac, tần số 50/60 Hz. RAM RAM (viết tắt từ Random Access Memory trong tiếng Anh) là một loại bộ nhớ chính của máy tính. RAM được gọi là bộ nhớ truy cập ngẫu nhiên vì nó có đặc tính: thời gian thực hiện thao tác đọc hoặc ghi đối với mỗi ô nhớ là như nhau, cho dù đang ở bất kỳ vị trí nào trong bộ nhớ. Mỗi ô nhớ của RAM đều có một địa chỉ. Thông thường, mỗi ô nhớ là một byte (8 bit); tuy nhiên hệ thống lại có thể đọc ra hay ghi vào nhiều byte (2, 4, 8 byte). RAM khác biệt với các thiết bị bộ nhớ tuần tự (sequential memory device) chẳng hạn như các băng từ, đĩa; mà các loại thiết bị này bắt buộc máy tính phải di chuyển cơ học một cách tuần tự để truy cập dữ liệu. Bởi vì các chip RAM có thể đọc hay ghi dữ liệu nên thuật ngữ RAM cũng được hiểu như là một bộ nhớ đọc-ghi, trái ngược với bộ nhớ chỉ đọc ROM (read-only memory). RAM thông thường được sử dụng cho bộ nhớ chính (main memory) trong máy tính để lưu trữ các thông tin thay đổi, và các thông tin được sử dụng hiện hành. Cũng có những thiết bị sử dụng một vài loại RAM như là một thiết bị lưu trữ thứ cấp (secondary storage). Thông tin lưu trên RAM chỉ là tạm thời, chúng sẽ mất đi khi mất nguồn điện cung cấp. Một số loại RAM. Từ trên xuống: DIP, SIPP, SIMM 30 chân, SIMM 72 chân, DIMM (168 chân), DDR DIMM (184-chân). Đặc trưng Bộ nhớ RAM có 4 đặc trưng sau: Dung lượng bộ nhớ: Tổng số byte của bộ nhớ ( nếu tính theo byte ) hoặc là tổng số bit trong bộ nhớ nếu tính theo bit. Tổ chức bộ nhớ: Số ô nhớ và số bit cho mỗi ô nhớ Thời gian thâm nhập: Thời gian từ lúc đưa ra địa chỉ của ô nhớ đến lúc đọc được nội dung của ô nhớ đó. Chu kỳ bộ nhớ: Thời gian giữa hai lần liên tiếp thâm nhập bộ nhớ. Mục đích Máy vi tính sử dụng RAM để lưu trữ mã chương trình và dữ liệu trong suốt quá trình thực thi. Đặc trưng tiêu biểu của RAM là có thể truy cập vào những vị trí khác nhau trong bộ nhớ và hoàn tất trong khoảng thời gian tương tự, ngược lại với một số kỹ thuật khác, đòi hỏi phải có một khoảng thời gian trì hoãn nhất định. Phân loại RAM Tùy theo công nghệ chế tạo, người ta phân biệt thành 2 loại: SRAM (Static RAM): RAM tĩnh DRAM (Dynamic RAM): RAM động RAM tĩnh RAM tĩnh được chế tạo theo công nghệ ECL (dùng trong CMOS và BiCMOS). Mỗi bit nhớ gồm có các cổng logic với 6 transistor MOS. SRAM là bộ nhớ nhanh, việc đọc không làm hủy nội dung của ô nhớ và thời gian thâm nhập bằng chu kỳ của bộ nhớ. 6 transistor trong một ô nhớ của RAM tĩnh RAM động RAM động dùng kỹ thuật MOS. Mỗi bit nhớ gồm một transistor và một tụ điện. Việc ghi nhớ dữ liệu dựa vào việc duy trì điện tích nạp vào tụ điện và như vậy việc đọc một bit nhớ làm nội dung bit này bị hủy. Do vậy sau mỗi lần đọc một ô nhớ, bộ phận điều khiển bộ nhớ phải viết lại nội dung ô nhớ đó. Chu kỳ bộ nhớ cũng theo đó mà ít nhất là gấp đôi thời gian thâm nhập ô nhớ. Việc lưu giữ thông tin trong bit nhớ chỉ là tạm thời vì tụ điện sẽ phóng hết điện tích đã nạp và như vậy phải làm tươi bộ nhớ sau khoảng thời gian 2μs. Việc làm tươi được thực hiện với tất cả các ô nhớ trong bộ nhớ. Công việc này được thực hiện tự động bởi một vi mạch bộ nhớ. Bộ nhớ DRAM chậm nhưng rẻ tiền hơn SRAM. 1 transistor và 1 tụ điện trong một ô nhớ của RAM động Các loại DRAM SDRAM (Viết tắt từ Synchronous Dynamic RAM) được gọi là DRAM đồng bộ. SDRAM gồm 3 phân loại: SDR, DDR, và DDR2. SDR SDRAM (Single Data Rate SDRAM), thường được giới chuyên môn gọi tắt là "SDR". Có 168 chân. Được dùng trong các máy vi tính cũ, bus speed chạy cùng vận tốc với clock speed của memory chip, nay đã lỗi thời. DDR SDRAM (Double Data Rate SDRAM), thường được giới chuyên môn gọi tắt là "DDR". Có 184 chân. DDR SDRAM là cải tiến của bộ nhớ SDR với tốc độ truyền tải gấp đôi SDR nhờ vào việc truyền tải hai lần trong một chu kỳ bộ nhớ. Đã được thay thế bởi DDR2. DDR2 SDRAM (Double Data Rate 2 SDRAM), Thường được giới chuyên môn gọi tắt là "DDR2". Là thế hệ thứ hai của DDR với 240 chân, lợi thế lớn nhất của nó so với DDR là có bus speed cao gấp đôi clock speed. RDRAM (Viết tắt từ Rambus Dynamic RAM), thường được giới chuyên môn gọi tắt là "Rambus". Đây là một loại DRAM được thiết kế kỹ thuật hoàn toàn mới so với kỹ thuật SDRAM. RDRAM hoạt động đồng bộ theo một hệ thống lặp và truyền dữ liệu theo một hướng. Một kênh bộ nhớ RDRAM có thể hỗ trợ đến 32 chip DRAM. Mỗi chip được ghép nối tuần tự trên một module gọi là RIMM (Rambus Inline Memory Module) nhưng việc truyền dữ liệu được thực hiện giữa các mạch điều khiển và từng chip riêng biệt chứ không truyền giữa các chip với nhau. Bus bộ nhớ RDRAM là đường dẫn liên tục đi qua các chip và module trên bus, mỗi module có các chân vào và ra trên các đầu đối diện. Do đó, nếu các khe cắm không chứa RIMM sẽ phải gắn một module liên tục để đảm bảo đường truyền được nối liền. Tốc độ Rambus đạt từ 400-800MHz Rambus tuy không nhanh hơn SDRAM là bao nhưng lại đắt hơn rất nhiều nên có rất ít người dùng. RDRAM phải cắm thành cặp và ở những khe trống phải cắm những thanh RAM giả (còn gọi là C-RIMM) cho đủ. Card RAM 4 MB của máy tính VAX 8600 sản xuất năm 1986. Các chipRAM nằm vào những vùng chữ nhật ở bên trái và bên phải Các thông số của RAM Được phân loại theo chuẩn của JEDEC. Dung lượng Dung lượng RAM được tính bằng MB và GB, thông thường RAM được thiết kế với các dung lượng 8, 16, 32, 64, 128, 256, 512 MB, 1 GB, 2 GB... Dung lượng của RAM càng lớn càng tốt cho hệ thống, tuy nhiên không phải tất cả các hệ thống phần cứng và hệ điều hành đều hỗ trợ các loại RAM có dung lượng lớn, một số hệ thống phần cứng của máy tính cá nhân chỉ hỗ trợ đến tối đa 4 GB và một số hệ điều hành (như phiên bản 32 bit của Windows XP) chỉ hỗ trợ đến 3 GB. BUS SDR SDRAM được phân loại theo bus speed như sau: PC-66: 66 MHz bus. PC-100: 100 MHz bus. PC-133: 133 MHz bus. DDR SDRAM được phân loại theo bus speed và bandwidth như sau: DDR-200: Còn được gọi là PC-1600. 100 MHz bus với 1600 MB/s bandwidth. DDR-266: Còn được gọi là PC-2100. 133 MHz bus với 2100 MB/s bandwidth. DDR-333: Còn được gọi là PC-2700. 166 MHz bus với 2667 MB/s bandwidth. DDR-400: Còn được gọi là PC-3200. 200 MHz bus với 3200 MB/s bandwidth. DDR2 SDRAM được phân loại theo bus speed và bandwidth như sau: DDR2-400: Còn được gọi là PC2-3200. 100 MHz clock, 200 MHz bus với 3200 MB/s bandwidth. DDR2-533: Còn được gọi là PC2-4200. 133 MHz clock, 266 MHz bus với 4267 MB/s bandwidth. DDR2-667: Còn được gọi là PC2-5300. 166 MHz clock, 333 MHz bus với 5333 MB/s bandwidth. DDR2-800: Còn được gọi là PC2-6400. 200 MHz clock, 400 MHz bus với 6400 MB/s bandwidth. Các loại modul của RAM Trước đây, các loại RAM được các hãng sản xuất thiết kế cắm các chip nhớ trên bo mạch chủ thông qua các đế cắm (có dạng DIP theo hình minh hoạ trên), điều này thường không thuận tiện cho sự nâng cấp hệ thống. Cùng với sự phát triển chung của công nghệ máy tính, các RAM được thiết kế thành các modul như SIMM, DIMM (như hình minh hoạ trên) để thuận tiện cho thiết kế và nâng cấp hệ thống máy tính. SIMM (Single In-line Memory Module) DIMM (Dual In-line Memory Module) SO-DIM: (Small Outline Dual In-line Memory Module): Thường sử dụng trong các máy tính xách tay. Tính tương thích với bo mạch chủ Không phải các RAM khác nhau đều sử dụng được trên tất cả các bo mạch chủ. Mỗi loại bo mạch chủ lại sử dụng với một loại RAM khác nhau tuỳ thuộc vào chipset của bo mạch chủ. ROM-Bộ nhớ chỉ đọc Bộ nhớ chỉ đọc (tiếng Anh: Read-only memory - ROM) là một loại thiết bị lưu trữ dùng trong máy tính và các thiết bị khác. Nó có tên như vậy vì không dễ để ghi thông tin lên nó. ROM, theo đúng nghĩa, chỉ cho phép đọc dữ liệu từ chúng tuy nhiên tất cả các loại ROM đều cho phép ghi dữ liệu ít nhất một lần, hoặc khi sản xuất lần đầu hoặc trong bước lập trình. Một số loại ROM cho phép xóa và lập trình lại nhiều lần Các loại ROM PROM (Programmable Read-Only Memory): Được chế tạo bằng các mối nối (cầu chì - có thể làm đứt bằng mạch điện). Nó thuộc dạng WORM (Write-Once-Read-Many). Chương trình nằm trong PROM có thể lập trình được bằng những thiết bị đặc biệt. Loại ROM này chỉ có thể lập trình được một lần. EPROM được chế tạo bằng nguyên tắc phân cực tĩnh điện. Cửa sổ nhỏ dùng để xóa bằng tia cực tím. EPROM (Erasable Programmable Read-Only Memory): Được chế tạo bằng nguyên tắc phân cực tĩnh điện. Loại ROM này có thể bị xóa bằng tia cực tím và ghi lại thông qua thiết bị ghi EPROM. EAROM (Electrically Alterable Read-Only Memory): Loại ROM này có thể thay đổi từng bit một lần. Tuy nhiên quá trình viết khá chậm và sử dụng điện thế không chuẩn. Việc viết lại EAROM không được thực hiện thường xuyên. EEPROM (Electrically Erasable Programmable Read-Only Memory): Được chế tạo bằng công nghệ bán dẫn. Nội dung của ROM này có thể viết vào và xóa (bằng điện). D23128C PROM trên bo mạch ZX Spectrum Router Router, hay thiết bị định tuyến hoặc bộ định tuyến, là một thiết bị mạng máy tính dùng để chuyển các gói dữ liệu qua một liên mạng và đến các đầu cuối, thông qua một tiến trình được gọi là định tuyến. Định tuyến xảy ra ở tầng 3 tầng mạng của mô hình OSI 7 tầng. Router dùng để làm gì Theo cách nói thông thường, một router hoạt động như một liên kết giữa hai hoặc nhiều mạng và chuyển các gói dữ liệu giữa chúng. Router đưa vào bảng định tuyến (routing table) để tìm đường đi cho gói dữ liệu. Bảng định tuyến được quản trị mạng cấu hình tĩnh (static), nghĩa là được thiết lập 1 lần và thường do quản trị mạng nhập bằng tay, hoặc động (dynamic), nghĩa là bảng tự học đường đi và nội dung tự động thay đổi theo sự thay đổi của tô pô mạng. Một cách giúp xây dựng bảng định tuyến là theo hướng dẫn của CCNA. Router không phải một thiết bị chuyển mạch (network switch). Bộ router NAT của Linksys, thường sử dụng cho những mạng máy tính ở nhà hay ở cơ sở nhỏ Modem Modem (viết tắt từ modulator and demodulator) là một thiết bị điều chế sóng tín hiệu tương tự nhau để mã hóa dữ liệu số, và giải điều chế tín hiệu mang để giải mã tín hiệu số. Một thí dụ quen thuộc nhất của modem băng tần tiếng nói là chuyển tín hiệu số '1' và '0' của máy tính thành âm thanh mà nó có thể truyền qua dây điện thoại của Plain Old Telephone Systems (POTS), và khi nhận được ở đầu kia, nó sẽ chuyển âm thanh đó trở về tín hiệu '1' và '0'. Modem thường được phân loại bằng lượng dữ liệu truyền nhận trong một khoảng thời gian, thường được tính bằng đơn vị bit trên giây, hoặc "bps". Các người dùng Internet thường dùng các loại modem nhanh hơn, chủ yếu là modem cáp đồng trục và modem ADSL. Trong viễn thông, "radio modem" truyền tuần tự dữ liệu với tốc độ rất cao qua kết nối sóng viba. Một vài loại modem sóng viba truyền nhận với tốc độ hơn một trăm triệu bps. Modem cáp quang truyền dữ liệu qua cáp quang. Hầu hết các kết nối dữ liệu liên lục địa hiện tại dùng cáp quang để truyền dữ liệu qua các đường cáp dưới đáy biển. Các modem cáp quang có tốc độ truyền dữ liệu đạt hàng tỉ (1x109) bps. Chipset Chipset là một nhóm các mạch tích hợp (các "chip") được thiết kế để làm việc cùng nhau và đi cùng nhau như một sản phẩm đơn. Trong máy tính, từ chipset thường dùng để nói đến các chip đặc biệt trên bo mạch chủ hoặc trên các card mở rộng. Khi nói đến các máy tính cá nhân (PC) dựa trên hệ thống Intel Pentium, từ "chipset" thường dùng để nói đến hai chip bo mạch chính: chip cầu bắc và chip cầu nam. Nhà sản xuất chip thường không phụ thuộc vào nhà sản xuất bo mạch. Ví dụ các nhà sản xuất chipset cho bo mạch PC có NVIDIA, ATI, VIA Technologies, SiS và Intel. Trong các máy tính gia đình, các máy trò chơi từ thập niên 1980 và thập niên 1990, từ chipset được sử dụng để chỉ các chip xử lý âm thanh và hình ảnh. Các hệ thống máy tính được sản xuất trước thập niên 1980 thường dùng chung một loại chipset, mặc dù những máy này có nhiều đặc tính khác nhau. Ví dụ, chipset NCR 53C9x, một chipset giá thấp sử dụng giao diện SCSI cho các thiết bị lưu trữ, có thể thấy trong các máy Unix (như MIPS Magnum), các thiết bị nhúng và các máy tính cá nhân. BIOS BIOS ở đây là viết tắt của cụm từ tiếng Anh (Basic Input/Output System) có nghĩa là Hệ thống thâu nhập thâu xuất cơ bản. BIOS nằm bên trong máy tính cá nhân, trên bo mạch chính. BIOS được xem như là chương trình được chạy đầu tiên khi máy tính khởi động. Chức năng chính của BIOS là chuẩn bị cho máy tính để các chương trình phần mềm được lưu trữ trên các thiết bị lưu trữ (chẳng hạn như ổ cứng, đĩa mềm và đĩa CD) có thể được nạp, thực thi và điều khiển máy tính. Quá trình này gọi là khởi động. Thuật ngữ này xuất hiện lần đầu trong hệ điều hành CP/M, là phần CP/M được tải lên trong suốt quá trình khởi động, tương tác trực tiếp với phần cứng (các máy CP/M thường có duy nhất một trình khởi động trong ROM). Các phiên bản nổi tiếng của DOS có một tập tin gọi là "IBMBIO.COM" hay "IO.SYS" có chứng năng giống như BIOS CP/M. Tuy nhiên, thuật ngữ BIOS ngày nay chỉ một chương trình phần mềm khác được chứa trong các chip có sẵn trên bản mạch chính như PROM, EPROM và nó nắm giữ các chức năng chuẩn bị cho máy đồng thời tìm ra ổ nhớ cũng như liên lạc và giao sự điều hành máy lại cho hệ điều hành. Vận hành của BIOS BIOS được chứa sẵn (thường ở dạng nén dữ liệu) trong các con chip như là PROM, EPROM hay bộ nhớ flash của bo mạch chính. Khi máy tính được mở qua công tắc bật điện hay khi được nhất nút reset, thì BIOS được khởi động và chương trình này sẽ tiến hành các thử nghiệm khám nghiệm trên các ổ điã, bộ nhớ, bo hình, các con chip có chức năng riêng khác và các phần cứng còn lại. Thông thường, BIOS tự giải nén vào trong bộ nhớ chính của máy tính và bắt đầu vận hành từ đây. Hầu hết các lắp đặt của BIOS ngày nay có thể thực thi cài đặt các chương trình giao diện CMOS. Bộ phận này (CMOS) là nơi lưu giữ các dữ liệu cài đặt chuyên biệt của người dùng; như thời gian, các đặc tính chi tiết của ổ đĩa, việc gán chức năng khởi động cho bộ điều khiển (controller) nào, hay ngay cả mật mã khởi động máy, ... CMOS được truy cập bởi BIOS. Đối với hệ kiến trúc 80x86, mã nguồn BIOS của các máy PC và AT thời kỳ đầu đã có kèm Bản tham chiếu kĩ thuật IBM. Trong hầu hết các lắp đặt của BIOS ngày nay, người dùng có thể lựa chọn thiết bị nào được khởi động trước: CD, đĩa cứng, đĩa mềm, ổ USB, hay các thiết bị lưu trữ tương thích. Thủ tục này đặc biệt hữu ích cho việc cài đặt các hệ điều hành hay khởi động từ CD/DVD khởi động được hay ổ USB khởi động được và cho việc lựa chọn thứ tự của việc kiểm tra sự hiện hữu của các vật liệu (media) khởi động được. Một số BIOS cho phép người dùng lựa chọn hệ điều hành để nạp vào bộ nhớ (thường thấy khả năng này trong các máy mới có kiến trúc 64-bit như các hệ máy chủ Itanium của HP chẳng hạn). Mặc dù vậy, thường thấy hơn, thì thao tác này được tiến hành bởi giai đoạn hai của bộ tải khởi động (boot loader). BIOS và chế độ thực (realmode) Đối với các máy theo kiến trúc 8086, khi CPU bắt đầu hoạt động nó lập tức tự cài đặt vào chế độ thực và tìm đến vị trí của đúng 16 byte trên đỉnh của Mega byte của chế độ thực tại địa chỉ 0FFFF0h. Chính tại địa chỉ này, một lệnh jump sẽ dẫn tới nơi mà mã BIOS được bắt đầu thi hành. BIOS như là phần sụn ROM có BIOS BIOS đôi khi được gọi là phần sụn vì nó là phần tích hợp trong một hệ thống phần cứng. Trước năm 1990, BIOS được lưu giữ trong các con chip ROM và do đó không thể thay đổi (ngoại trừ phải có các thiết bị đặc biệt để đổi phần mềm cho con chip BIOS). Do BIOS ngày càng phức tạp và nhu cầu cập nhật trở nên ngày càng cao, phần sụn BIOS nay thường được chứa trong EEPROM hay trong bộ nhớ flash để người dùng có thể cập nhật chúng dễ dàng hơn (qua đĩa mềm, ổ USB, hay các CD khởi động được). Mặc dù vậy, nếu công việc cập nhật BIOS được tiến hành với sai sót hoặc không được tiến hành trong thời gian đủ dài thì có thể dẫn đến tình trạng máy tính hay thiết bị không sử dụng được nữa (do BIOS bị hỏng hoặc không tương thích với đòi hỏi mới của hệ điều hành). Để tránh hỏng hóc BIOS, một số bo mạch chính loại mới có thêm chức năng lưu giữ lại một phiên bản BIOS cũ. Ngoài ra, hầu hết các BIOS còn có một khối khởi động mà chúng là một phần của ROM được chạy trước tiên và không thể đổi mới được. Khối mã này sẽ kiểm nghiệm xem các phần còn lại của BIOS có còn hoạt động hay không (thông qua các thao tác như là checksum, băm (hash),... v.v.) trước khi thực thi chúng. Nếu khối khởi động này tìm ra hỏng hóc, thì nó thường sẽ tự khởi động từ ổ mềm để cho người dùng có thể thử đổi mới BIOS lại. Các nhà hãng sản xuất phần cứng thường xuất bản các cập nhật BIOS để cải tiến sản phẩm của họ và sửa các trục trặc trong phiên bản cũ. Phần sụn trong các bộ điều hợp Một máy tính có thể có nhiều chip có phần sụn BIOS. BIOS của bo mạch chính thường chỉ chứa mã để truy cập các thành phần cơ bản của phần cứng như bàn phím, ổ đĩa mềm, các bộ điều khiển ATA (IDE), các giao diện nhân tính USB (USB human interface) và các thiết bị lưu trữ. Thêm vào đó, các bộ điều hợp được cắm thêm vào máy, chẳng hạn các loại bộ điều khiển SCSI, RAID, NIC và các bo video, thường có BIOS của riêng mình với mục đích để hoàn thiện hay để thay thế mã của hệ thống BIOS cho chính các bộ phận đó. Trong nhiều trường hợp, khi các thiết bị được sử dụng bởi các bộ điều hợp cắm thêm và được trực tiếp tích hợp trên bo mạch chính, thì ROM cắm thêm có thể cũng được lưu trữ như là một khối mã riêng biệt trong con chip BIOS chính. Phần này có thể được cập nhật một cách riêng biệt tùy theo BIOS "cắm thêm" (đôi khi còn được gọi là "option ROM"). Các bo cắm thêm thường chỉ đòi hỏi có thêm BIOS nếu chúng: Cần được sử dụng trước khi có mặt hệ điều hành (nghĩa là chúng có thể được dùng như là một phần của quá trình tải các khởi động mồi (bootstrap) của hệ điều hành (chẳng hạn như các cài đặt RAID cho ổ cứng trên các bộ điều khiển RAID Array cần được tiến hành trước khi cài đặt hệ điều hành), và Không quá đơn giản hay quá chung chung trong hoạt động. (Vì nếu quá đơn giản hoặc quá chung chung thì có thể tiến hành trực tiếp qua BIOS chính.) Các hệ điều hành cũ như DOS, cũng như các bộ tải khởi động, có thể tiếp tục sử dụng BIOS để xử lý vào ra dữ liệu (thông qua các ngắt BIOS (BIOS interrupt) mà thường thấy nhất là INT 13h). Mặc dù vậy, hầu hết các hệ điều hành ngày nay sẽ trực tiếp liên lạc với các thiết bị phần cứng bằng cách sử dụng trình điều khiển (device driver) của chính các phần cứng đó để truy cập chúng. Đôi khi các BIOS cắm thêm này cũng được gọi bởi các hệ điều hành hiện đại, nhằm thực thi các thao tác đặc biệt chẳng hạn việc khởi tạo cho các thiết bị đó. Trong khi khởi động, để tìm ra địa chỉ của ROM mở rộng được ánh xạ vào bộ nhớ chính, các kiến tạo của PC BIOS sẽ đọc quét bộ nhớ thực từ địa chỉ 0xC0000 đến địa chỉ 0xF0000, nội trong giới hạn 2 kilobyte để tìm ra hai byte chữ ký (signature byte) có giá trị lần lượt là 0x55 và 0xAA, nằm ngay sau hai byte đó sẽ là một byte cho biết số lượng của các khối 512 byte mà ROM mở rộng chiếm chỗ trong bộ nhớ thực. BIOS sau đó sẽ thường dùng lệnh jump nhảy tới offset (khoảng cách/địa chỉ tương đối) được ghi ngay sau byte chứa kích thước nói trên. Từ đây, các mã ROM mở rộng sẽ lấy quyền điều hành và gọi các dịch vụ BIOS để cung cấp một giao diện cấu hình cho người dùng, đăng kí các vector ngắt cho các ứng dụng sau khởi động, hay hiển thị thông tin khám nghiệm. Đối với các hệ thống UNIX và Windows/DOS, có một số tiện ích dành cho việc đọc phần sụn BIOS tại địa chỉ http://www.linuks.mine.nu/ree/. Đặc tả BIOS Khởi động Nếu ROM mở rộng muốn thay đổi cách thức khởi động hệ thống (chẳng hạn từ một thiết bị mạng hay từ một bộ điều hợp SCSI mà BIOS chính không có mã điều vận), nó có thể dùng API của Đặc tả BIOS Khởi động (BIOS Boot Specification -- BBS) để đăng kí khả năng này của mình -- Trên các NIC, khả năng này thường được gọi là Thức giấc bằng LAN (wake up on LAN) nghĩa là qua một mệnh lệnh truyền qua mạng, ta có thể khởi động một máy tính có mã BIOS hỗ trợ chức năng này). Một khi các ROM mở rộng đã đăng kí dùng các API của BBS, người dùng máy có thể lựa chọn trong số các chức năng thêm vào này để khởi động qua giao diện sử dụng của BIOS. Đây cũng là lý do tại sao các BIOS sẽ không cho phép người dùng vào được giao diện sử dụng của BIOS cho tới khi tất cả các ROM mở rộng đã hoàn tất việc tự thực thi và đăng ký phần của chúng với API của BBS. Tăng và giảm chức năng Các hệ điều hành cũ như DOS dùng BIOS để thực thi hầu hết các thao tác xuất nhập trên máy PC. Với sự xuất hiện của các hệ điều hành mới hơn như Microsoft Windows, Linux, BIOS gần như cơ bản chỉ dùng để cung cấp cài đặt khởi động phần cứng và khởi động mồi. Một khi đã chạy được, hệ điều hành ít khi phụ thuộc vào BIOS. Trong những năm gần đây, nhờ các hệ thống thiết kế như ACPI, BIOS nhận thêm nhiều chức năng phức tạp, chẳng hạn các khía cạnh của quản lý năng lượng, cắm nóng (hotplug), quản lý nhiệt độ ... v.v. Điều này dẫn tới đổi mới trách vụ của BIOS thông qua các nhà sản xuất hệ điều hành, và độ phức tạp của mã BIOS cũng tăng lên. BIOS trong thương vụ Hầu hết các nhà cung cấp bo mạch chính PC mua quyền sử dụng một "cốt lõi" BIOS và bộ công cụ từ các hãng thương mại, nơi đã tạo ra và bảo trì các "cốt lõi" đó. Sau đó, các nhà máy sản xuất bo mạch chính sẽ điều chỉnh BIOS này cho hợp với phần cứng của họ - vì lí do này, việc cập nhật các BIOS thường được tiếp nhận trực tiếp từ các hãng chế tạo main. Danh mục các nhà cung cấp BIOS American Megatrends Inc. Phoenix Technologies Award Software International MicroID Research (MRBIOS) Insyde Software (Insyde) General Software (General Software)